feat(library): start new type class resolution procedure

This commit is contained in:
Leonardo de Moura 2015-10-16 18:51:20 -07:00
parent ee924e4842
commit 3b6eae1907
3 changed files with 962 additions and 1 deletions

View file

@ -16,4 +16,4 @@ add_library(library OBJECT deep_copy.cpp expr_lt.cpp io_state.cpp occurs.cpp
relation_manager.cpp export.cpp user_recursors.cpp
class_instance_synth.cpp idx_metavar.cpp composition_manager.cpp
tc_multigraph.cpp noncomputable.cpp aux_recursors.cpp norm_num.cpp
decl_stats.cpp meng_paulson.cpp)
decl_stats.cpp meng_paulson.cpp class_instance_resolution.cpp)

View file

@ -0,0 +1,924 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/lbool.h"
#include "util/interrupt.h"
#include "util/sexpr/option_declarations.h"
#include "kernel/instantiate.h"
#include "kernel/abstract.h"
#include "kernel/for_each_fn.h"
#include "library/normalize.h"
#include "library/reducible.h"
#include "library/class.h"
#include "library/replace_visitor.h"
#include "library/class_instance_resolution.h"
#ifndef LEAN_DEFAULT_CLASS_UNIQUE_CLASS_INSTANCES
#define LEAN_DEFAULT_CLASS_UNIQUE_CLASS_INSTANCES false
#endif
#ifndef LEAN_DEFAULT_CLASS_TRACE_INSTANCES
#define LEAN_DEFAULT_CLASS_TRACE_INSTANCES false
#endif
#ifndef LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH
#define LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH 32
#endif
#ifndef LEAN_DEFAULT_CLASS_TRANS_INSTANCES
#define LEAN_DEFAULT_CLASS_TRANS_INSTANCES true
#endif
namespace lean {
typedef std::shared_ptr<ci_type_inference> ci_type_inference_ptr;
static name * g_class_unique_class_instances = nullptr;
static name * g_class_trace_instances = nullptr;
static name * g_class_instance_max_depth = nullptr;
static name * g_class_trans_instances = nullptr;
static name * g_prefix1 = nullptr;
static name * g_prefix2 = nullptr;
static ci_type_inference_factory * g_default_factory = nullptr;
LEAN_THREAD_PTR(ci_type_inference_factory, g_factory);
LEAN_THREAD_PTR(io_state, g_ios);
bool get_class_unique_class_instances(options const & o) {
return o.get_bool(*g_class_unique_class_instances, LEAN_DEFAULT_CLASS_UNIQUE_CLASS_INSTANCES);
}
bool get_class_trace_instances(options const & o) {
return o.get_bool(*g_class_trace_instances, LEAN_DEFAULT_CLASS_TRACE_INSTANCES);
}
unsigned get_class_instance_max_depth(options const & o) {
return o.get_unsigned(*g_class_instance_max_depth, LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH);
}
bool get_class_trans_instances(options const & o) {
return o.get_bool(*g_class_trans_instances, LEAN_DEFAULT_CLASS_TRANS_INSTANCES);
}
class default_ci_type_inference : public ci_type_inference {
type_checker_ptr m_tc;
public:
default_ci_type_inference(environment const & env):
m_tc(mk_type_checker(env, name_generator(*g_prefix1), UnfoldReducible)) {}
virtual ~default_ci_type_inference() {}
virtual expr whnf(expr const & e) {
return m_tc->whnf(e).first;
}
virtual expr infer_type(expr const & e) {
return m_tc->infer(e).first;
}
};
std::shared_ptr<ci_type_inference> ci_type_inference_factory::operator()(environment const & env) const {
return std::shared_ptr<ci_type_inference>(new default_ci_type_inference(env));
}
static ci_type_inference_factory & get_ci_factory() {
return g_factory ? *g_factory : *g_default_factory;
}
struct cienv {
typedef rb_map<unsigned, level, unsigned_cmp> uassignment;
typedef rb_map<unsigned, expr, unsigned_cmp> eassignment;
environment m_env;
ci_type_inference_ptr m_tc_ptr;
expr_struct_map<expr> m_cache;
name_generator m_ngen;
name_predicate m_not_reducible_pred;
list<expr> m_ctx;
buffer<expr> m_local_instances;
unsigned m_next_uvar;
unsigned m_next_mvar;
struct state {
list<expr> m_stack; // stack of meta-variables that need to be synthesized;
uassignment m_uassignment;
eassignment m_eassignment;
};
state m_state; // active state
struct choice {
list<expr> m_local_instances;
list<name> m_trans_instances;
list<name> m_instances;
state m_state;
};
list<choice> m_choices;
bool m_multiple_instances;
// configuration
bool m_unique_instances;
unsigned m_max_depth;
bool m_trans_instances;
bool m_trace_instances;
cienv(bool multiple_instances = false):
m_ngen(*g_prefix2),
m_next_uvar(0),
m_next_mvar(0),
m_multiple_instances(multiple_instances) {}
bool is_not_reducible(name const & n) const {
return m_not_reducible_pred(n);
}
void reset_cache() {
m_ctx = list<expr>();
expr_struct_map<expr> fresh;
fresh.swap(m_cache);
}
optional<expr> check_cache(expr const & type) const {
if (m_multiple_instances) {
// We do not cache results when multiple instances have to be generated.
return none_expr();
}
auto it = m_cache.find(type);
if (it != m_cache.end())
return some_expr(it->second);
else
return none_expr();
}
void cache_result(expr const & type, expr const & inst) {
if (m_multiple_instances) {
// We do not cache results when multiple instances have to be generated.
return;
}
m_cache.insert(mk_pair(type, inst));
}
void set_options(options const & o) {
bool unique_instances = get_class_unique_class_instances(o);
unsigned max_depth = get_class_instance_max_depth(o);
bool trans_instances = get_class_trans_instances(o);
bool trace_instances = get_class_trace_instances(o);
if (m_unique_instances != unique_instances ||
m_max_depth != max_depth ||
m_trans_instances != trans_instances ||
m_trace_instances != trace_instances) {
reset_cache();
}
m_unique_instances = unique_instances;
m_max_depth = max_depth;
m_trans_instances = trans_instances;
m_trace_instances = trace_instances;
}
void set_env(environment const & env) {
if (!m_env.is_descendant(m_env) || !m_env.is_descendant(env)) {
m_env = env;
m_not_reducible_pred = mk_not_reducible_pred(m_env);
m_tc_ptr = nullptr;
reset_cache();
}
if (!m_tc_ptr) {
ci_type_inference_factory & factory = get_ci_factory();
m_tc_ptr = factory(m_env);
}
}
expr whnf(expr const & e) {
return m_tc_ptr->whnf(e);
}
expr infer_type(expr const & e) {
return m_tc_ptr->infer_type(e);
}
bool is_prop(expr const & e) {
if (m_env.impredicative()) {
expr t = whnf(infer_type(e));
return t == mk_Prop();
} else {
return false;
}
}
name mk_fresh_name() {
return m_ngen.next();
}
expr mk_local(expr const & type) {
return lean::mk_local(mk_fresh_name(), type);
}
/** \brief If the constant \c e is a class, return its name */
optional<name> constant_is_class(expr const & e) {
name const & cls_name = const_name(e);
if (lean::is_class(m_env, cls_name)) {
return optional<name>(cls_name);
} else {
return optional<name>();
}
}
optional<name> is_full_class(expr type) {
type = whnf(type);
if (is_pi(type)) {
return is_full_class(instantiate(binding_body(type), mk_local(binding_domain(type))));
} else {
expr f = get_app_fn(type);
if (!is_constant(f))
return optional<name>();
return constant_is_class(f);
}
}
/** \brief Partial/Quick test for is_class. Result
l_true: \c type is a class, and the name of the class is stored in \c result.
l_false: \c type is not a class.
l_undef: procedure did not establish whether \c type is a class or not.
*/
lbool is_quick_class(expr const & type, name & result) {
expr const * it = &type;
while (true) {
switch (it->kind()) {
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Local:
case expr_kind::Meta: case expr_kind::Lambda:
return l_false;
case expr_kind::Macro:
return l_undef;
case expr_kind::Constant:
if (auto r = constant_is_class(*it)) {
result = *r;
return l_true;
} else if (is_not_reducible(const_name(*it))) {
return l_false;
} else {
return l_undef;
}
case expr_kind::App: {
expr const & f = get_app_fn(*it);
if (is_constant(f)) {
if (auto r = constant_is_class(f)) {
result = *r;
return l_true;
} else if (is_not_reducible(const_name(f))) {
return l_false;
} else {
return l_undef;
}
} else if (is_lambda(f) || is_macro(f)) {
return l_undef;
} else {
return l_false;
}
}
case expr_kind::Pi:
it = &binding_body(*it);
break;
}
}
}
/** \brief Return true iff \c type is a class or Pi that produces a class. */
optional<name> is_class(expr const & type) {
name result;
switch (is_quick_class(type, result)) {
case l_true: return optional<name>(result);
case l_false: return optional<name>();
case l_undef: break;
}
return is_full_class(type);
}
// Auxiliary method for set_ctx
void set_local_instance(unsigned i, expr const & e) {
lean_assert(i <= m_local_instances.size());
if (i == m_local_instances.size()) {
reset_cache();
m_local_instances.push_back(e);
} else if (e != m_local_instances[i]) {
reset_cache();
m_local_instances[i] = e;
} else {
// we don't need to reset the cache since this local instance
// is equal to the one used in a previous call
}
}
void set_ctx(list<expr> const & ctx) {
if (is_eqp(m_ctx, ctx)) {
// we can keep the cache because the local context
// is still pointing to the same object.
return;
}
m_ctx = ctx;
unsigned i = 0;
for (expr const & e : ctx) {
// Remark: we use infer_type(e) instead of mlocal_type because we want to allow
// customers (e.g., blast) of this class to store the type of local constants
// in a different place.
if (is_class(infer_type(e))) {
set_local_instance(i, e);
i++;
}
}
}
// Create an internal universal metavariable
level mk_uvar() {
unsigned idx = m_next_uvar;
m_next_uvar++;
return mk_meta_univ(name(*g_prefix2, idx));
}
// Return true iff \c l is an internal universe metavariable created by this module.
static bool is_uvar(level const & l) {
if (!is_meta(l))
return false;
name const & n = meta_id(l);
return !n.is_atomic() && n.get_prefix() == *g_prefix2;
}
static unsigned uvar_idx(level const & l) {
lean_assert(is_uvar(l));
return meta_id(l).get_numeral();
}
level const * get_assignment(level const & u) const {
return m_state.m_uassignment.find(uvar_idx(u));
}
bool is_assigned(level const & u) const {
return get_assignment(u) != nullptr;
}
// Assign \c v to the universe metavariable \c u.
void update_assignment(level const & u, level const & v) {
m_state.m_uassignment.insert(uvar_idx(u), v);
}
// Assign \c v to the universe metavariable \c u.
void assign(level const & u, level const & v) {
lean_assert(!is_assigned(u));
update_assignment(u, v);
}
// Create an internal metavariable.
expr mk_mvar(expr const & type) {
unsigned idx = m_next_mvar;
m_next_mvar++;
return mk_metavar(name(*g_prefix2, idx), type);
}
// Return true iff \c e is an internal metavariable created by this module.
static bool is_mvar(expr const & e) {
if (!is_metavar(e))
return false;
name const & n = mlocal_name(e);
return !n.is_atomic() && n.get_prefix() == *g_prefix2;
}
static unsigned mvar_idx(expr const & m) {
lean_assert(is_mvar(m));
return mlocal_name(m).get_numeral();
}
expr const * get_assignment(expr const & m) const {
return m_state.m_eassignment.find(mvar_idx(m));
}
bool is_assigned(expr const & m) const {
return get_assignment(m) != nullptr;
}
void update_assignment(expr const & m, expr const & v) {
m_state.m_eassignment.insert(mvar_idx(m), v);
}
// Assign \c v to the metavariable \c m.
void assign(expr const & m, expr const & v) {
lean_assert(!is_assigned(m));
update_assignment(m, v);
}
bool is_def_eq(level const & l1, level const & l2) {
if (is_equivalent(l1, l2)) {
return true;
} else {
if (is_uvar(l1)) {
if (auto v = get_assignment(l1)) {
return is_def_eq(*v, l2);
} else {
assign(l1, l2);
return true;
}
}
if (is_uvar(l2)) {
if (auto v = get_assignment(l2)) {
return is_def_eq(l1, *v);
} else {
assign(l2, l1);
return true;
}
}
}
return false;
}
bool is_def_eq(levels const & ls1, levels const & ls2) {
if (is_nil(ls1) && is_nil(ls2)) {
return true;
} else if (!is_nil(ls1) && !is_nil(ls2)) {
return
is_def_eq(head(ls1), head(ls2)) &&
is_def_eq(tail(ls1), tail(ls2));
} else {
return false;
}
}
/** \brief Given \c e of the form <tt>?m t_1 ... t_n</tt>, where
?m is an assigned mvar, substitute \c ?m with its assignment. */
expr subst_mvar(expr const & e) {
buffer<expr> args;
expr const & m = get_app_args(e, args);
lean_assert(is_mvar(m));
expr const * v = get_assignment(m);
lean_assert(v);
return apply_beta(*v, args.size(), args.data());
}
bool has_assigned_uvar(level const & l) const {
if (!has_meta(l))
return false;
if (m_state.m_uassignment.empty())
return false;
bool found = false;
for_each(l, [&](level const & l) {
if (!has_meta(l))
return false; // stop search
if (found)
return false; // stop search
if (is_uvar(l) && is_assigned(l)) {
found = true;
return false; // stop search
}
return true; // continue search
});
return found;
}
bool has_assigned_uvar(levels const & ls) const {
for (level const & l : ls) {
if (has_assigned_uvar(l))
return true;
}
return false;
}
bool has_assigned_uvar_mvar(expr const & e) const {
if (!has_expr_metavar(e) && !has_univ_metavar(e))
return false;
if (m_state.m_eassignment.empty() && m_state.m_uassignment.empty())
return false;
bool found = false;
for_each(e, [&](expr const & e, unsigned) {
if (!has_expr_metavar(e) && !has_univ_metavar(e))
return false; // stop search
if (found)
return false; // stop search
if ((is_mvar(e) && is_assigned(e)) ||
(is_constant(e) && has_assigned_uvar(const_levels(e))) ||
(is_sort(e) && has_assigned_uvar(sort_level(e)))) {
found = true;
return false; // stop search
}
return true; // continue search
});
return found;
}
level instantiate_uvars(level const & l) {
if (!has_assigned_uvar(l))
return l;
return replace(l, [&](level const & l) {
if (!has_meta(l)) {
return some_level(l);
} else if (is_uvar(l)) {
if (auto v1 = get_assignment(l)) {
level v2 = instantiate_uvars(*v1);
if (*v1 != v2) {
update_assignment(l, v2);
return some_level(v2);
} else {
return some_level(*v1);
}
}
}
return none_level();
});
}
struct instantiate_uvars_mvars_fn : public replace_visitor {
cienv & m_owner;
level visit_level(level const & l) {
return m_owner.instantiate_uvars(l);
}
levels visit_levels(levels const & ls) {
return map_reuse(ls,
[&](level const & l) { return visit_level(l); },
[](level const & l1, level const & l2) { return is_eqp(l1, l2); });
}
virtual expr visit_sort(expr const & s) {
return update_sort(s, visit_level(sort_level(s)));
}
virtual expr visit_constant(expr const & c) {
return update_constant(c, visit_levels(const_levels(c)));
}
virtual expr visit_local(expr const & e) {
return update_mlocal(e, visit(mlocal_type(e)));
}
virtual expr visit_meta(expr const & m) {
lean_assert(is_mvar(m));
if (auto v1 = m_owner.get_assignment(m)) {
if (!has_expr_metavar(*v1)) {
return *v1;
} else {
expr v2 = m_owner.instantiate_uvars_mvars(*v1);
if (v2 != *v1)
m_owner.update_assignment(m, v2);
return v2;
}
} else {
return m;
}
}
virtual expr visit_app(expr const & e) {
buffer<expr> args;
expr const & f = get_app_rev_args(e, args);
if (is_mvar(f)) {
if (auto v = m_owner.get_assignment(f)) {
expr new_app = apply_beta(*v, args.size(), args.data());
if (has_expr_metavar(new_app))
return visit(new_app);
else
return new_app;
}
}
expr new_f = visit(f);
buffer<expr> new_args;
bool modified = !is_eqp(new_f, f);
for (expr const & arg : args) {
expr new_arg = visit(arg);
if (!is_eqp(arg, new_arg))
modified = true;
new_args.push_back(new_arg);
}
if (!modified)
return e;
else
return mk_rev_app(new_f, new_args, e.get_tag());
}
virtual expr visit_macro(expr const & e) {
lean_assert(is_macro(e));
buffer<expr> new_args;
for (unsigned i = 0; i < macro_num_args(e); i++)
new_args.push_back(visit(macro_arg(e, i)));
return update_macro(e, new_args.size(), new_args.data());
}
virtual expr visit(expr const & e) {
if (!has_expr_metavar(e) || !has_univ_metavar(e))
return e;
else
return replace_visitor::visit(e);
}
public:
instantiate_uvars_mvars_fn(cienv & o):m_owner(o) {}
expr operator()(expr const & e) { return visit(e); }
};
expr instantiate_uvars_mvars(expr const & e) {
if (!has_assigned_uvar_mvar(e))
return e;
else
return instantiate_uvars_mvars_fn(*this)(e);
}
/** \brief Given \c ma of the form <tt>?m t_1 ... t_n</tt>, (try to) assign
?m to (an abstraction of) v. Return true if success and false otherwise. */
bool assign_mvar(expr const & ma, expr const & v) {
buffer<expr> args;
expr const & m = get_app_args(ma, args);
buffer<expr> locals;
for (expr const & arg : args) {
if (!is_local(arg))
break; // is not local
if (std::any_of(locals.begin(), locals.end(), [&](expr const & local) {
return mlocal_name(local) == mlocal_name(arg); }))
break; // duplicate local
locals.push_back(arg);
}
lean_assert(is_mvar(m));
expr new_v = instantiate_uvars_mvars(v);
// We must check
// 1. Any local constant occurring in new_v occurs in locals
// 2. m does not occur in new_v
bool ok = true;
for_each(new_v, [&](expr const & e, unsigned) {
if (!ok)
return false; // stop search
if (is_local(e)) {
if (std::all_of(locals.begin(), locals.end(), [&](expr const & a) {
return mlocal_name(a) != mlocal_name(e); })) {
ok = false; // failed 1
return false;
}
} else if (is_mvar(e)) {
if (m == e) {
ok = false; // failed 2
return false;
}
return false;
}
return true;
});
if (!ok)
return false;
if (args.empty()) {
// easy case
assign(m, new_v);
return true;
} else if (args.size() == locals.size()) {
assign(m, Fun(locals, new_v));
return true;
} else {
// This case is imprecise since it is not a higher order pattern.
// That the term \c ma is of the form (?m t_1 ... t_n) and the t_i's are not pairwise
// distinct local constants.
expr m_type = mlocal_type(m);
for (unsigned i = 0; i < args.size(); i++) {
m_type = whnf(m_type);
if (!is_pi(m_type))
return false;
lean_assert(i <= locals.size());
if (i == locals.size())
locals.push_back(mk_local(binding_domain(m_type)));
lean_assert(i < locals.size());
m_type = instantiate(binding_body(m_type), locals[i]);
}
lean_assert(locals.size() == args.size());
assign(m, Fun(locals, new_v));
return true;
}
}
bool is_def_eq_binding(expr e1, expr e2) {
lean_assert(e1.kind() == e2.kind());
lean_assert(is_binding(e1));
expr_kind k = e1.kind();
buffer<expr> subst;
do {
optional<expr> var_e1_type;
if (binding_domain(e1) != binding_domain(e2)) {
var_e1_type = instantiate_rev(binding_domain(e1), subst.size(), subst.data());
expr var_e2_type = instantiate_rev(binding_domain(e2), subst.size(), subst.data());
if (!is_def_eq_core(var_e2_type, *var_e1_type))
return false;
}
if (!closed(binding_body(e1)) || !closed(binding_body(e2))) {
// local is used inside t or s
if (!var_e1_type)
var_e1_type = instantiate_rev(binding_domain(e1), subst.size(), subst.data());
subst.push_back(mk_local(*var_e1_type));
} else {
expr const & dont_care = mk_Prop();
subst.push_back(dont_care);
}
e1 = binding_body(e1);
e2 = binding_body(e2);
} while (e1.kind() == k && e2.kind() == k);
return is_def_eq_core(instantiate_rev(e1, subst.size(), subst.data()),
instantiate_rev(e2, subst.size(), subst.data()));
}
bool is_def_eq_app(expr const & e1, expr const & e2) {
lean_assert(is_app(e1) && is_app(e2));
buffer<expr> args1, args2;
expr const & f1 = get_app_args(e1, args1);
expr const & f2 = get_app_args(e2, args2);
if (args1.size() != args2.size() || !is_def_eq_core(f1, f2))
return false;
for (unsigned i = 0; i < args1.size(); i++) {
if (!is_def_eq_core(args1[i], args2[i]))
return false;
}
return true;
}
bool is_def_eq_eta(expr const & e1, expr const & e2) {
expr new_e1 = try_eta(e1);
expr new_e2 = try_eta(e2);
if (e1 != new_e1 || e2 != new_e2)
return is_def_eq_core(new_e1, new_e2);
return false;
}
bool is_def_eq_proof_irrel(expr const & e1, expr const & e2) {
if (!m_env.prop_proof_irrel())
return false;
expr e1_type = infer_type(e1);
expr e2_type = infer_type(e2);
return is_prop(e1_type) && is_def_eq_core(e1_type, e2_type);
}
bool is_def_eq_core(expr const & e1, expr const & e2) {
check_system("is_def_eq");
if (e1 == e2)
return true;
expr const & f1 = get_app_fn(e1);
if (is_mvar(f1)) {
if (is_assigned(f1)) {
return is_def_eq_core(subst_mvar(e1), e2);
} else {
return assign_mvar(e1, e2);
}
}
expr const & f2 = get_app_fn(e2);
if (is_mvar(f2)) {
if (is_assigned(f2)) {
return is_def_eq_core(e1, subst_mvar(e2));
} else {
return assign_mvar(e2, e1);
}
}
expr e1_n = whnf(e1);
expr e2_n = whnf(e2);
if (e1 != e1_n || e2 != e2_n)
return is_def_eq_core(e1_n, e2_n);
if (e1.kind() == e2.kind()) {
switch (e1.kind()) {
case expr_kind::Lambda:
case expr_kind::Pi:
if (is_def_eq_binding(e1, e2))
return true;
break;
case expr_kind::Sort:
if (is_def_eq(sort_level(e1), sort_level(e2)))
return true;
break;
case expr_kind::Meta:
case expr_kind::Var:
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::Local:
case expr_kind::Macro:
break;
case expr_kind::Constant:
if (const_name(e1) == const_name(e2) &&
is_def_eq(const_levels(e1), const_levels(e2)))
return true;
break;
case expr_kind::App:
if (is_def_eq_app(e1, e2))
return true;
break;
}
}
if (is_def_eq_eta(e1, e2))
return true;
return is_def_eq_proof_irrel(e1, e2);
}
bool is_def_eq(expr const & e1, expr const & e2) {
state saved_state = m_state;
if (!is_def_eq_core(e1, e2)) {
m_state = saved_state;
return false;
} else {
return true;
}
}
expr init_search(expr const & type) {
m_state = state();
expr m = mk_mvar(type);
m_state.m_stack = cons(m, m_state.m_stack);
return m;
}
optional<expr> search() {
// TODO(Leo):
return none_expr();
}
optional<expr> operator()(environment const & env, options const & o, list<expr> const & ctx, expr const & type) {
set_env(env);
set_options(o);
set_ctx(ctx);
if (auto r = check_cache(type))
return r;
expr m = init_search(type);
if (auto r = search()) {
cache_result(type, *r);
return r;
} else {
return none_expr();
}
}
optional<expr> next() {
if (!m_multiple_instances)
return none_expr();
// TODO(Leo): backtrack and search
return none_expr();
}
};
MK_THREAD_LOCAL_GET_DEF(cienv, get_cienv);
static void reset_cache() {
get_cienv().reset_cache();
}
ci_type_inference_factory_scope::ci_type_inference_factory_scope(ci_type_inference_factory & factory):
m_old(g_factory) {
g_factory = &factory;
reset_cache();
}
ci_type_inference_factory_scope::~ci_type_inference_factory_scope() {
reset_cache();
g_factory = m_old;
}
optional<expr> mk_class_instance(environment const & env, io_state const & ios, list<expr> const & ctx, expr const & e) {
flet<io_state*> set_ios(g_ios, const_cast<io_state*>(&ios));
return get_cienv()(env, ios.get_options(), ctx, e);
}
optional<expr> mk_class_instance(environment const & env, list<expr> const & ctx, expr const & e) {
return mk_class_instance(env, get_dummy_ios(), ctx, e);
}
void initialize_class_instance_resolution() {
g_prefix1 = new name(name::mk_internal_unique_name());
g_prefix2 = new name(name::mk_internal_unique_name());
g_class_unique_class_instances = new name{"class", "unique_instances"};
g_class_trace_instances = new name{"class", "trace_instances"};
g_class_instance_max_depth = new name{"class", "instance_max_depth"};
g_class_trans_instances = new name{"class", "trans_instances"};
register_bool_option(*g_class_unique_class_instances, LEAN_DEFAULT_CLASS_UNIQUE_CLASS_INSTANCES,
"(class) generate an error if there is more than one solution "
"for a class-instance resolution problem");
register_bool_option(*g_class_trace_instances, LEAN_DEFAULT_CLASS_TRACE_INSTANCES,
"(class) display messages showing the class-instances resolution execution trace");
register_unsigned_option(*g_class_instance_max_depth, LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH,
"(class) max allowed depth in class-instance resolution");
register_bool_option(*g_class_trans_instances, LEAN_DEFAULT_CLASS_TRANS_INSTANCES,
"(class) use automatically derived instances from the transitive closure of "
"the structure instance graph");
g_default_factory = new ci_type_inference_factory();
}
void finalize_class_instance_resolution() {
delete g_default_factory;
delete g_prefix1;
delete g_prefix2;
delete g_class_unique_class_instances;
delete g_class_trace_instances;
delete g_class_instance_max_depth;
delete g_class_trans_instances;
}
}

View file

@ -0,0 +1,37 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <memory>
#include "kernel/environment.h"
#include "library/io_state.h"
namespace lean {
class ci_type_inference {
public:
virtual ~ci_type_inference() {}
virtual expr whnf(expr const & e) = 0;
virtual expr infer_type(expr const & e) = 0;
};
class ci_type_inference_factory {
public:
virtual ~ci_type_inference_factory();
virtual std::shared_ptr<ci_type_inference> operator()(environment const & env) const;
};
class ci_type_inference_factory_scope {
ci_type_inference_factory * m_old;
public:
ci_type_inference_factory_scope(ci_type_inference_factory & factory);
~ci_type_inference_factory_scope();
};
optional<expr> mk_class_instance(environment const & env, io_state const & ios, list<expr> const & ctx, expr const & e);
optional<expr> mk_class_instance(environment const & env, list<expr> const & ctx, expr const & e);
void initialize_class_instance_resolution();
void finalize_class_instance_resolution();
}