fix(library/theories/group_theory): have-tactic
This commit is contained in:
parent
cc8d9bc7ff
commit
3b73b5b207
2 changed files with 7 additions and 6 deletions
|
@ -431,7 +431,7 @@ subset_of_forall take g, begin
|
|||
apply finsubg_has_inv,
|
||||
apply mem_sep_of_mem !mem_univ,
|
||||
intro h Ph,
|
||||
have Phg : fin_lcoset (fin_lcoset H g) h = fin_lcoset H g, exact PH Ph,
|
||||
have Phg : fin_lcoset (fin_lcoset H g) h = fin_lcoset H g, from PH Ph,
|
||||
revert Phg,
|
||||
rewrite [↑conj_by, inv_inv, mul.assoc, fin_lcoset_compose, -fin_lcoset_same, ↑fin_lcoset, mem_image_iff, ↑lmul_by],
|
||||
intro Pex, cases Pex with k Pand, cases Pand with Pkin Pk,
|
||||
|
@ -494,9 +494,8 @@ lemma lift_lower_eq : ∀ {p : perm (fin (succ n))} (P : p maxi = maxi),
|
|||
| (perm.mk pf Pinj) := assume Pmax, begin
|
||||
rewrite [↑lift_perm], congruence,
|
||||
apply funext, intro i,
|
||||
have Pfmax : pf maxi = maxi, apply Pmax,
|
||||
have Pd : decidable (i = maxi),
|
||||
exact _,
|
||||
have Pfmax : pf maxi = maxi, by apply Pmax,
|
||||
have Pd : decidable (i = maxi), from _,
|
||||
cases Pd with Pe Pne,
|
||||
rewrite [Pe, Pfmax], apply lift_fun_max,
|
||||
rewrite [lift_fun_of_ne_max Pne, ↑lower_perm, ↑lift_succ],
|
||||
|
|
|
@ -194,9 +194,11 @@ lemma order_of_min_pow {a : A} {n : nat}
|
|||
or.elim (eq_or_lt_of_le (order_le Pone)) (λ P, P)
|
||||
(λ P : order a < succ n, begin
|
||||
have Pn : a^(order a) ≠ 1,
|
||||
begin
|
||||
rewrite [-(succ_pred_of_pos (order_pos a))],
|
||||
apply Pmin, apply nat.lt_of_succ_lt_succ,
|
||||
rewrite [succ_pred_of_pos !order_pos], assumption,
|
||||
rewrite [succ_pred_of_pos !order_pos], assumption
|
||||
end,
|
||||
exact absurd (pow_order a) Pn end)
|
||||
|
||||
lemma order_dvd_of_pow_eq_one {a : A} {n : nat} (Pone : a^n = 1) : order a ∣ n :=
|
||||
|
@ -243,7 +245,7 @@ local attribute group_of_add_group [instance]
|
|||
lemma pow_eq_mul {n : nat} {i : fin (succ n)} : ∀ {k : nat}, i^k = mk_mod n (i*k)
|
||||
| 0 := by rewrite [pow_zero]
|
||||
| (succ k) := begin
|
||||
have Psucc : i^(succ k) = madd (i^k) i, apply pow_succ',
|
||||
have Psucc : i^(succ k) = madd (i^k) i, by apply pow_succ',
|
||||
rewrite [Psucc, pow_eq_mul],
|
||||
apply eq_of_veq,
|
||||
rewrite [mul_succ, val_madd, ↑mk_mod, mod_add_mod]
|
||||
|
|
Loading…
Reference in a new issue