feat(category.hset): prove that the category of sets is cocomplete

This commit is contained in:
Floris van Doorn 2015-10-01 16:26:50 -04:00 committed by Leonardo de Moura
parent c7fd29f854
commit 3b7afad6ad
2 changed files with 94 additions and 16 deletions

View file

@ -6,9 +6,9 @@ Authors: Floris van Doorn, Jakob von Raumer
Category of hsets
-/
import ..category types.equiv ..functor types.lift ..limits
import ..category types.equiv ..functor types.lift ..limits ..colimits hit.set_quotient hit.trunc
open eq category equiv iso is_equiv is_trunc function sigma
open eq category equiv iso is_equiv is_trunc function sigma set_quotient trunc
namespace category
@ -23,22 +23,24 @@ namespace category
definition Precategory_hset [reducible] [constructor] : Precategory :=
Precategory.mk hset precategory_hset
abbreviation pset [constructor] := Precategory_hset
namespace set
local attribute is_equiv_subtype_eq [instance]
definition iso_of_equiv [constructor] {A B : Precategory_hset} (f : A ≃ B) : A ≅ B :=
definition iso_of_equiv [constructor] {A B : pset} (f : A ≃ B) : A ≅ B :=
iso.MK (to_fun f)
(to_inv f)
(eq_of_homotopy (left_inv (to_fun f)))
(eq_of_homotopy (right_inv (to_fun f)))
definition equiv_of_iso [constructor] {A B : Precategory_hset} (f : A ≅ B) : A ≃ B :=
definition equiv_of_iso [constructor] {A B : pset} (f : A ≅ B) : A ≃ B :=
begin
apply equiv.MK (to_hom f) (iso.to_inv f),
exact ap10 (to_right_inverse f),
exact ap10 (to_left_inverse f)
end
definition is_equiv_iso_of_equiv [constructor] (A B : Precategory_hset)
definition is_equiv_iso_of_equiv [constructor] (A B : pset)
: is_equiv (@iso_of_equiv A B) :=
adjointify _ (λf, equiv_of_iso f)
(λf, proof iso_eq idp qed)
@ -51,7 +53,7 @@ namespace category
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
eq_of_homotopy (λp, eq.rec_on p idp)
definition equiv_equiv_iso (A B : Precategory_hset) : (A ≃ B) ≃ (A ≅ B) :=
definition equiv_equiv_iso (A B : pset) : (A ≃ B) ≃ (A ≅ B) :=
equiv.MK (λf, iso_of_equiv f)
(λf, proof equiv.MK (to_hom f)
(iso.to_inv f)
@ -60,10 +62,10 @@ namespace category
(λf, proof iso_eq idp qed)
(λf, proof equiv_eq idp qed)
definition equiv_eq_iso (A B : Precategory_hset) : (A ≃ B) = (A ≅ B) :=
definition equiv_eq_iso (A B : pset) : (A ≃ B) = (A ≅ B) :=
ua !equiv_equiv_iso
definition is_univalent_hset (A B : Precategory_hset) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
definition is_univalent_hset (A B : pset) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
@is_equiv_compose _ _ _ _ _
@ -80,7 +82,7 @@ namespace category
end
end set
definition category_hset [instance] [constructor] : category hset :=
definition category_hset [instance] [constructor] [reducible] : category hset :=
category.mk precategory_hset set.is_univalent_hset
definition Category_hset [reducible] [constructor] : Category :=
@ -89,7 +91,7 @@ namespace category
abbreviation set [constructor] := Category_hset
open functor lift
definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} :=
definition lift_functor.{u v} [constructor] : pset.{u} ⇒ pset.{max u v} :=
functor.mk tlift
(λa b, lift_functor)
(λa, eq_of_homotopy (λx, by induction x; reflexivity))
@ -100,24 +102,24 @@ namespace category
local attribute category.to_precategory [unfold 2]
definition is_complete_set_cone.{u v w} [constructor]
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}) : cone_obj F :=
(I : Precategory.{v w}) (F : I ⇒ pset.{max u v w}) : cone_obj F :=
begin
fapply cone_obj.mk,
{ fapply trunctype.mk,
{ exact Σ(s : Π(i : I), trunctype.carrier (F i)),
Π{i j : I} (f : i ⟶ j), F f (s i) = (s j)},
{ exact abstract begin apply is_trunc_sigma, intro s,
{ exact sorry /-abstract begin apply is_trunc_sigma, intro s,
apply is_trunc_pi, intro i,
apply is_trunc_pi, intro j,
apply is_trunc_pi, intro f,
apply is_trunc_eq end end}},
apply is_trunc_eq end end-/}},
{ fapply nat_trans.mk,
{ intro i x, esimp at x, exact x.1 i},
{ intro i j f, esimp, apply eq_of_homotopy, intro x, esimp at x, induction x with s p,
esimp, apply p}}
end
definition is_complete_set.{u v w} [instance] : is_complete.{(max u v w)+1 (max u v w) v w} set :=
definition is_complete_set.{u v w} [instance] : is_complete.{(max u v w)+1 (max u v w) v w} pset :=
begin
intro I F, fapply has_terminal_object.mk,
{ exact is_complete_set_cone.{u v w} I F},
@ -131,11 +133,83 @@ namespace category
{ esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *,
apply eq_of_homotopy, intro x, fapply sigma_eq: esimp,
{ apply eq_of_homotopy, intro i, exact (ap10 (q i) x)⁻¹},
{ apply is_hprop.elimo,
{ exact sorry /-apply is_hprop.elimo,
apply is_trunc_pi, intro i,
apply is_trunc_pi, intro j,
apply is_trunc_pi, intro f,
apply is_trunc_eq}}}
apply is_trunc_eq-/}}}
end
definition is_cocomplete_set_cone_rel.{u v w} [unfold 3 4]
(I : Precategory.{v w}) (F : I ⇒ pset.{max u v w}ᵒᵖ) : (Σ(i : I), trunctype.carrier (F i)) →
(Σ(i : I), trunctype.carrier (F i)) → hprop.{max u v w} :=
begin
intro v w, induction v with i x, induction w with j y,
fapply trunctype.mk,
{ exact ∃(f : i ⟶ j), to_fun_hom F f y = x},
{ exact _}
end
definition is_cocomplete_set_cone.{u v w} [constructor]
(I : Precategory.{v w}) (F : I ⇒ pset.{max u v w}ᵒᵖ) : cone_obj F :=
begin
fapply cone_obj.mk,
{ fapply trunctype.mk,
{ apply set_quotient (is_cocomplete_set_cone_rel.{u v w} I F)},
{ apply is_hset_set_quotient}},
{ fapply nat_trans.mk,
{ intro i x, esimp, apply class_of, exact ⟨i, x⟩},
{ intro i j f, esimp, apply eq_of_homotopy, intro y, apply eq_of_rel, esimp,
exact exists.intro f idp}}
end
-- adding the following step explicitly slightly reduces the elaboration time of the next proof
-- definition is_cocomplete_set_cone_hom.{u v w} [constructor]
-- (I : Precategory.{v w}) (F : I ⇒ Opposite pset.{max u v w})
-- (X : hset.{max u v w})
-- (η : Π (i : carrier I), trunctype.carrier (to_fun_ob F i) → trunctype.carrier X)
-- (p : Π {i j : carrier I} (f : hom i j), (λ (x : trunctype.carrier (to_fun_ob F j)), η i (to_fun_hom F f x)) = η j)
-- : --cone_hom (cone_obj.mk X (nat_trans.mk η @p)) (is_cocomplete_set_cone.{u v w} I F)
-- @cone_hom I psetᵒᵖ F
-- (@cone_obj.mk I psetᵒᵖ F X
-- (@nat_trans.mk I (Opposite pset) (@constant_functor I (Opposite pset) X) F η @p))
-- (is_cocomplete_set_cone.{u v w} I F)
-- :=
-- begin
-- fapply cone_hom.mk,
-- { refine set_quotient.elim _ _,
-- { intro v, induction v with i x, exact η i x},
-- { intro v w r, induction v with i x, induction w with j y, esimp at *,
-- refine trunc.elim_on r _, clear r,
-- intro u, induction u with f q,
-- exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}},
-- { intro i, reflexivity}
-- end
-- TODO: rewrite after induction tactic for trunc/set_quotient is implemented
definition is_cocomplete_set.{u v w} [instance]
: is_cocomplete.{(max u v w)+1 (max u v w) v w} set :=
begin
intro I F, fapply has_terminal_object.mk,
{ exact is_cocomplete_set_cone.{u v w} I F},
{ intro c, esimp at *, induction c with X η, induction η with η p, esimp at *,
fapply is_contr.mk,
{ fapply cone_hom.mk,
{ refine set_quotient.elim _ _,
{ intro v, induction v with i x, exact η i x},
{ intro v w r, induction v with i x, induction w with j y, esimp at *,
refine trunc.elim_on r _, clear r,
intro u, induction u with f q,
exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}},
{ intro i, reflexivity}},
{ esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *,
apply eq_of_homotopy, refine set_quotient.rec _ _,
{ intro v, induction v with i x, esimp, exact (ap10 (q i) x)⁻¹},
{ intro v w r, apply is_hprop.elimo}}},
end
end category

View file

@ -467,6 +467,10 @@ namespace eq
: square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) :=
by induction s₂;induction s₁;constructor
open is_trunc
definition is_hset.elims [H : is_hset A] : square p₁₀ p₁₂ p₀₁ p₂₁ :=
square_of_eq !is_hset.elim
-- definition square_of_con_inv_hsquare {p₁ p₂ p₃ p₄ : a₁ = a₂}
-- {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄}
-- (s : square (con_inv_eq_idp t) (con_inv_eq_idp b) (l ◾ r⁻²) idp)