feat(theories/analysis): define frechet derivative + basic theorems

This commit is contained in:
Rob Lewis 2016-02-17 13:48:50 -05:00 committed by Leonardo de Moura
parent c87e79ff7f
commit 3c0f19c967
3 changed files with 200 additions and 0 deletions

View file

@ -0,0 +1,156 @@
/-
Copyright (c) 2016 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
Bounded linear operators
-/
import .normed_space .real_limit algebra.module
open real nat classical
noncomputable theory
namespace analysis
section bdd_lin_op
structure is_bdd_linear_map [class] {V W : Type} [normed_vector_space V] [normed_vector_space W] (f : V → W) extends is_linear_map f :=
(op_norm : ) (op_norm_pos : op_norm > 0) (op_norm_bound : ∀ v : V, ∥f v∥ ≤ op_norm * ∥v∥)
/-theorem is_bdd_linear_map_id [instance] (V : Type) [normed_vector_space V] : is_bdd_linear_map (λ a : V, a) :=
sorry-/
theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f g : V → W) [Hbf : is_bdd_linear_map f] [Hbg : is_bdd_linear_map g] :
is_bdd_linear_map (λ x, f x + g x) :=
begin
fapply is_bdd_linear_map.mk,
{intros,
rewrite [linear_map_additive f, linear_map_additive g],
simp},
{intros,
rewrite [linear_map_homogeneous f, linear_map_homogeneous g, smul_left_distrib]},
{exact is_bdd_linear_map.op_norm _ _ f + is_bdd_linear_map.op_norm _ _ g},
{apply add_pos,
repeat apply is_bdd_linear_map.op_norm_pos},
{intro,
apply le.trans,
apply norm_triangle,
rewrite right_distrib,
apply add_le_add,
repeat apply is_bdd_linear_map.op_norm_bound}
end
variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
--variable f : V → W --linear_operator V W
include HV HW
variable f : V → W
variable [Hf : is_bdd_linear_map f]
include Hf
definition op_norm := is_bdd_linear_map.op_norm _ _ f
theorem op_norm_pos : op_norm f > 0 := is_bdd_linear_map.op_norm_pos _ _ f
theorem op_norm_bound (v : V) : ∥f v∥ ≤ (op_norm f) * ∥v∥ := is_bdd_linear_map.op_norm_bound _ _ f v
theorem bounded_linear_operator_continuous : continuous f :=
begin
intro x,
apply normed_vector_space.continuous_at_intro,
intro ε Hε,
existsi ε / (op_norm f),
split,
apply div_pos_of_pos_of_pos Hε !op_norm_pos,
intro x' Hx',
rewrite [-linear_map_sub f],
apply lt_of_le_of_lt,
apply op_norm_bound f,
rewrite [-@mul_div_cancel' _ _ ε (op_norm f) (ne_of_gt !op_norm_pos)],
apply mul_lt_mul_of_pos_left,
exact Hx',
apply op_norm_pos
end
end bdd_lin_op
section frechet_deriv
variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
include HV HW
open topology
definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) :=
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0
structure frechet_diffable_at [class] (f : V → W) (x : V) :=
(A : V → W) [HA : is_bdd_linear_map A] (is_fr_der : is_frechet_deriv_at f A x)
variables f g : V → W
variable x : V
definition frechet_deriv_at [Hf : frechet_diffable_at f x] : V → W :=
frechet_diffable_at.A _ _ f x
definition frechet_deriv_at_is_bdd_linear_map [instance] (f : V → W) (x : V) [Hf : frechet_diffable_at f x] :
is_bdd_linear_map (frechet_deriv_at f x) :=
frechet_diffable_at.HA _ _ f x
theorem frechet_deriv_spec [Hf : frechet_diffable_at f x] :
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 :=
frechet_diffable_at.is_fr_der _ _ f x
theorem frechet_diffable_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_linear_map B]
(Hf : is_frechet_deriv_at f A x) (Hg : is_frechet_deriv_at g B x) :
is_frechet_deriv_at (λ y, f y + g y) (λ y, A y + B y) x :=
begin
rewrite ↑is_frechet_deriv_at,
have Hle : ∀ h, ∥f (x + h) + g (x + h) - (f x + g x) - (A h + B h)∥ / ∥h∥ ≤
∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥, begin
intro h,
cases em (∥h∥ > 0) with Hh Hh,
krewrite div_add_div_same,
apply div_le_div_of_le_of_pos,
have Hfeq : f (x + h) + g (x + h) - (f x + g x) - (A h + B h) =
(f (x + h) - f x - A h) + (g (x + h) - g x - B h), by simp,
rewrite Hfeq,
apply norm_triangle,
exact Hh,
have Hhe : ∥h∥ = 0, from eq_of_le_of_ge (le_of_not_gt Hh) !norm_nonneg,
krewrite [Hhe, *div_zero, zero_add],
eapply le.refl
end,
have Hlimge : (λ h, ∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥) ⟶ 0 at 0, begin
rewrite [-zero_add 0],
apply add_converges_to_at,
apply Hf,
apply Hg
end,
have Hlimle : (λ (h : V), (0 : )) ⟶ 0 at 0, from converges_to_at_constant 0 0,
apply converges_to_at_squeeze Hlimle Hlimge,
intro y,
apply div_nonneg_of_nonneg_of_nonneg,
repeat apply norm_nonneg,
apply Hle
end
/-theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous_at f x :=
begin
apply normed_vector_space.continuous_at_intro,
intros ε Hε,
note Hfds := frechet_deriv_spec f x Hε,
cases Hfds with δ Hδ,
cases Hδ with Hδ Hδ',
existsi δ,
split,
assumption,
intro x' Hx',
have Hx'x : x' - x ≠ 0 ∧ dist (x' - x) 0 < δ, from sorry,
note Hδ'' := Hδ' Hx'x,
end-/
end frechet_deriv
end analysis

View file

@ -399,6 +399,17 @@ definition converges_to_at (f : M → N) (y : N) (x : M) :=
notation f `⟶` y `at` x := converges_to_at f y x
theorem converges_to_at_constant (y : N) (x : M) : (λ m, y) ⟶ y at x :=
begin
intros ε Hε,
existsi 1,
split,
exact zero_lt_one,
intros x' Hx',
rewrite dist_self,
apply Hε
end
definition converges_at [class] (f : M → N) (x : M) :=
∃ y, converges_to_at f y x

View file

@ -241,3 +241,36 @@ proposition norm_converges_to_seq_zero_iff (X : → V) :
iff.intro converges_to_seq_zero_of_norm_converges_to_seq_zero norm_converges_to_seq_zero
end analysis
namespace analysis
variables {U V : Type}
variable [HU : normed_vector_space U]
variable [HV : normed_vector_space V]
variables f g : U → V
include HU HV
theorem add_converges_to_at {lf lg : V} {x : U} (Hf : f ⟶ lf at x) (Hg : g ⟶ lg at x) :
(λ y, f y + g y) ⟶ lf + lg at x :=
begin
apply converges_to_at_of_all_conv_seqs,
intro X HX,
apply add_converges_to_seq,
apply all_conv_seqs_of_converges_to_at Hf,
apply HX,
apply all_conv_seqs_of_converges_to_at Hg,
apply HX
end
open topology
theorem normed_vector_space.continuous_at_intro {x : U}
(H : ∀ ε : , ε > 0 → (∃ δ : , δ > 0 ∧ ∀ x' : U, ∥x' - x∥ < δ → ∥f x' - f x∥ < ε)) :
continuous_at f x :=
continuous_at_intro H
theorem normed_vector_space.continuous_at_elim {x : U} (H : continuous_at f x) :
∀ ε : , ε > 0 → (∃ δ : , δ > 0 ∧ ∀ x' : U, ∥x' - x∥ < δ → ∥f x' - f x∥ < ε) :=
continuous_at_elim H
end analysis