feat(library/data/{set,finset}): add more cardinality facts, rename, and add a lemma from Haitao
This commit is contained in:
parent
658c5a2c49
commit
3c1f5f4e33
4 changed files with 95 additions and 10 deletions
|
@ -47,6 +47,17 @@ definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A :=
|
||||||
definition to_finset [h : decidable_eq A] (l : list A) : finset A :=
|
definition to_finset [h : decidable_eq A] (l : list A) : finset A :=
|
||||||
⟦to_nodup_list l⟧
|
⟦to_nodup_list l⟧
|
||||||
|
|
||||||
|
lemma to_finset_eq_of_nodup [h : decidable_eq A] {l : list A} (n : nodup l) :
|
||||||
|
to_finset_of_nodup l n = to_finset l :=
|
||||||
|
assert P : to_nodup_list_of_nodup n = to_nodup_list l, from
|
||||||
|
begin
|
||||||
|
rewrite [↑to_nodup_list, ↑to_nodup_list_of_nodup],
|
||||||
|
generalize (@nodup_erase_dup A h l),
|
||||||
|
rewrite [erase_dup_eq_of_nodup n], intro x, apply congr_arg (subtype.tag l),
|
||||||
|
apply proof_irrel
|
||||||
|
end,
|
||||||
|
quot.sound (eq.subst P !setoid.refl)
|
||||||
|
|
||||||
definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) :=
|
definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) :=
|
||||||
λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
|
λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
|
||||||
(λ l₁ l₂,
|
(λ l₁ l₂,
|
||||||
|
@ -194,6 +205,12 @@ theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert
|
||||||
quot.induction_on s
|
quot.induction_on s
|
||||||
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
|
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
|
||||||
|
|
||||||
|
theorem card_insert_le (a : A) (s : finset A) :
|
||||||
|
card (insert a s) ≤ card s + 1 :=
|
||||||
|
decidable.by_cases
|
||||||
|
(assume H : a ∈ s, by rewrite [card_insert_of_mem H]; apply le_succ)
|
||||||
|
(assume H : a ∉ s, by rewrite [card_insert_of_not_mem H])
|
||||||
|
|
||||||
protected theorem induction [recursor 6] {P : finset A → Prop}
|
protected theorem induction [recursor 6] {P : finset A → Prop}
|
||||||
(H1 : P empty)
|
(H1 : P empty)
|
||||||
(H2 : ∀ ⦃a : A⦄, ∀{s : finset A}, a ∉ s → P s → P (insert a s)) :
|
(H2 : ∀ ⦃a : A⦄, ∀{s : finset A}, a ∉ s → P s → P (insert a s)) :
|
||||||
|
|
|
@ -91,6 +91,65 @@ assert Psub : _, from and.right Pinj,
|
||||||
assert Ple : card (image f a) ≤ card b, from card_le_card_of_subset Psub,
|
assert Ple : card (image f a) ≤ card b, from card_le_card_of_subset Psub,
|
||||||
by rewrite [(card_image_eq_of_inj_on (and.left Pinj))⁻¹]; exact Ple
|
by rewrite [(card_image_eq_of_inj_on (and.left Pinj))⁻¹]; exact Ple
|
||||||
|
|
||||||
|
theorem card_image_le (f : A → B) (s : finset A) : card (image f s) ≤ card s :=
|
||||||
|
finset.induction_on s
|
||||||
|
(by rewrite finset.image_empty)
|
||||||
|
(take a s',
|
||||||
|
assume Ha : a ∉ s',
|
||||||
|
assume IH : card (image f s') ≤ card s',
|
||||||
|
begin
|
||||||
|
rewrite [image_insert, card_insert_of_not_mem Ha],
|
||||||
|
apply le.trans !card_insert_le,
|
||||||
|
apply add_le_add_right IH
|
||||||
|
end)
|
||||||
|
|
||||||
|
theorem inj_on_of_card_image_eq {f : A → B} {s : finset A} :
|
||||||
|
card (image f s) = card s → inj_on f (ts s) :=
|
||||||
|
finset.induction_on s
|
||||||
|
(by intro H; xrewrite to_set_empty; apply inj_on_empty)
|
||||||
|
(begin
|
||||||
|
intro a s' Ha IH,
|
||||||
|
rewrite [image_insert, card_insert_of_not_mem Ha],
|
||||||
|
xrewrite [to_set_insert],
|
||||||
|
assume H1 : card (insert (f a) (image f s')) = card s' + 1,
|
||||||
|
show inj_on f (set.insert a (ts s')), from
|
||||||
|
decidable.by_cases
|
||||||
|
(assume Hfa : f a ∈ image f s',
|
||||||
|
have H2 : card (image f s') = card s' + 1,
|
||||||
|
by rewrite [card_insert_of_mem Hfa at H1]; assumption,
|
||||||
|
absurd
|
||||||
|
(calc
|
||||||
|
card (image f s') ≤ card s' : !card_image_le
|
||||||
|
... < card s' + 1 : lt_succ_self
|
||||||
|
... = card (image f s') : H2)
|
||||||
|
!lt.irrefl)
|
||||||
|
(assume Hnfa : f a ∉ image f s',
|
||||||
|
have H2 : card (image f s') + 1 = card s' + 1,
|
||||||
|
by rewrite [card_insert_of_not_mem Hnfa at H1]; assumption,
|
||||||
|
have H3 : card (image f s') = card s', from add.cancel_right H2,
|
||||||
|
have injf : inj_on f (ts s'), from IH H3,
|
||||||
|
show inj_on f (set.insert a (ts s')), from
|
||||||
|
take x1 x2,
|
||||||
|
assume Hx1 : x1 ∈ set.insert a (ts s'),
|
||||||
|
assume Hx2 : x2 ∈ set.insert a (ts s'),
|
||||||
|
assume feq : f x1 = f x2,
|
||||||
|
or.elim Hx1
|
||||||
|
(assume Hx1' : x1 = a,
|
||||||
|
or.elim Hx2
|
||||||
|
(assume Hx2' : x2 = a, by rewrite [Hx1', Hx2'])
|
||||||
|
(assume Hx2' : x2 ∈ ts s',
|
||||||
|
have Hfa : f a ∈ image f s',
|
||||||
|
by rewrite [-Hx1', feq]; apply mem_image_of_mem f Hx2',
|
||||||
|
absurd Hfa Hnfa))
|
||||||
|
(assume Hx1' : x1 ∈ ts s',
|
||||||
|
or.elim Hx2
|
||||||
|
(assume Hx2' : x2 = a,
|
||||||
|
have Hfa : f a ∈ image f s',
|
||||||
|
by rewrite [-Hx2', -feq]; apply mem_image_of_mem f Hx1',
|
||||||
|
absurd Hfa Hnfa)
|
||||||
|
(assume Hx2' : x2 ∈ ts s', injf Hx1' Hx2' feq)))
|
||||||
|
end)
|
||||||
|
|
||||||
end card_image
|
end card_image
|
||||||
|
|
||||||
theorem Sum_const_eq_card_mul (s : finset A) (n : nat) : (∑ x ∈ s, n) = card s * n :=
|
theorem Sum_const_eq_card_mul (s : finset A) (n : nat) : (∑ x ∈ s, n) = card s * n :=
|
||||||
|
|
|
@ -16,7 +16,7 @@ variable [deceq : decidable_eq A]
|
||||||
definition to_set (s : finset A) : set A := λx, x ∈ s
|
definition to_set (s : finset A) : set A := λx, x ∈ s
|
||||||
abbreviation ts := @to_set A
|
abbreviation ts := @to_set A
|
||||||
|
|
||||||
variables (s t : finset A) (x : A)
|
variables (s t : finset A) (x y : A)
|
||||||
|
|
||||||
theorem mem_eq_mem_to_set : (x ∈ s) = (x ∈ ts s) := rfl
|
theorem mem_eq_mem_to_set : (x ∈ s) = (x ∈ ts s) := rfl
|
||||||
|
|
||||||
|
@ -37,13 +37,16 @@ theorem to_set_univ [h : fintype A] : ts univ = (set.univ : set A) := funext (λ
|
||||||
|
|
||||||
include deceq
|
include deceq
|
||||||
|
|
||||||
theorem mem_to_set_union : (x ∈ ts (s ∪ t)) = (x ∈ ts s ∪ ts t) := !finset.mem_union_eq
|
theorem mem_to_set_insert : x ∈ ts (insert y s) = (x ∈ set.insert y (ts s)) := !finset.mem_insert_eq
|
||||||
|
theorem to_set_insert : ts (insert y s) = set.insert y (ts s) := funext (λ x, !mem_to_set_insert)
|
||||||
|
|
||||||
|
theorem mem_to_set_union : x ∈ ts (s ∪ t) = (x ∈ ts s ∪ ts t) := !finset.mem_union_eq
|
||||||
theorem to_set_union : ts (s ∪ t) = ts s ∪ ts t := funext (λ x, !mem_to_set_union)
|
theorem to_set_union : ts (s ∪ t) = ts s ∪ ts t := funext (λ x, !mem_to_set_union)
|
||||||
|
|
||||||
theorem mem_to_set_inter : (x ∈ ts (s ∩ t)) = (x ∈ ts s ∩ ts t) := !finset.mem_inter_eq
|
theorem mem_to_set_inter : x ∈ ts (s ∩ t) = (x ∈ ts s ∩ ts t) := !finset.mem_inter_eq
|
||||||
theorem to_set_inter : ts (s ∩ t) = ts s ∩ ts t := funext (λ x, !mem_to_set_inter)
|
theorem to_set_inter : ts (s ∩ t) = ts s ∩ ts t := funext (λ x, !mem_to_set_inter)
|
||||||
|
|
||||||
theorem mem_to_set_diff : (x ∈ ts (s \ t)) = (x ∈ ts s \ ts t) := !finset.mem_diff_eq
|
theorem mem_to_set_diff : x ∈ ts (s \ t) = (x ∈ ts s \ ts t) := !finset.mem_diff_eq
|
||||||
theorem to_set_diff : ts (s \ t) = ts s \ ts t := funext (λ x, !mem_to_set_diff)
|
theorem to_set_diff : ts (s \ t) = ts s \ ts t := funext (λ x, !mem_to_set_diff)
|
||||||
|
|
||||||
theorem mem_to_set_filter (p : A → Prop) [h : decidable_pred p] :
|
theorem mem_to_set_filter (p : A → Prop) [h : decidable_pred p] :
|
||||||
|
|
|
@ -35,26 +35,29 @@ setext (take y, iff.intro
|
||||||
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
|
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
|
||||||
exists.intro x (and.intro H4 H5)))
|
exists.intro x (and.intro H4 H5)))
|
||||||
|
|
||||||
theorem in_image {f : X → Y} {a : set X} {x : X} {y : Y}
|
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
|
||||||
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
|
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
|
||||||
exists.intro x (and.intro H1 H2)
|
exists.intro x (and.intro H1 H2)
|
||||||
|
|
||||||
|
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
|
||||||
|
mem_image H rfl
|
||||||
|
|
||||||
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
||||||
setext (take z,
|
setext (take z,
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume Hz : z ∈ (f ∘ g) '[a],
|
(assume Hz : z ∈ (f ∘ g) '[a],
|
||||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
|
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
|
||||||
have Hgx : g x ∈ g '[a], from in_image Hx₁ rfl,
|
have Hgx : g x ∈ g '[a], from mem_image Hx₁ rfl,
|
||||||
show z ∈ f '[g '[a]], from in_image Hgx Hx₂)
|
show z ∈ f '[g '[a]], from mem_image Hgx Hx₂)
|
||||||
(assume Hz : z ∈ f '[g '[a]],
|
(assume Hz : z ∈ f '[g '[a]],
|
||||||
obtain y (Hy₁ : y ∈ g '[a]) (Hy₂ : f y = z), from Hz,
|
obtain y (Hy₁ : y ∈ g '[a]) (Hy₂ : f y = z), from Hz,
|
||||||
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
|
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
|
||||||
show z ∈ (f ∘ g) '[a], from in_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
|
show z ∈ (f ∘ g) '[a], from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
|
||||||
|
|
||||||
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
|
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
|
||||||
take y, assume Hy : y ∈ f '[a],
|
take y, assume Hy : y ∈ f '[a],
|
||||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
|
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
|
||||||
in_image (H Hx₁) Hx₂
|
mem_image (H Hx₁) Hx₂
|
||||||
|
|
||||||
/- maps to -/
|
/- maps to -/
|
||||||
|
|
||||||
|
@ -80,6 +83,9 @@ take x, assume H, trivial
|
||||||
definition inj_on [reducible] (f : X → Y) (a : set X) : Prop :=
|
definition inj_on [reducible] (f : X → Y) (a : set X) : Prop :=
|
||||||
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
|
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
|
||||||
|
|
||||||
|
theorem inj_on_empty (f : X → Y) : inj_on f ∅ :=
|
||||||
|
take x₁ x₂, assume H₁ H₂ H₃, false.elim H₁
|
||||||
|
|
||||||
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a)
|
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a)
|
||||||
(inj_f1 : inj_on f1 a) :
|
(inj_f1 : inj_on f1 a) :
|
||||||
inj_on f2 a :=
|
inj_on f2 a :=
|
||||||
|
@ -147,7 +153,7 @@ lemma surjective_iff_surj_on_univ {f : X → Y} : surjective f ↔ surj_on f uni
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, take y, assume Hy,
|
(assume H, take y, assume Hy,
|
||||||
obtain x Hx, from H y,
|
obtain x Hx, from H y,
|
||||||
in_image trivial Hx)
|
mem_image trivial Hx)
|
||||||
(assume H, take y,
|
(assume H, take y,
|
||||||
obtain x H1x H2x, from H y trivial,
|
obtain x H1x H2x, from H y trivial,
|
||||||
exists.intro x H2x)
|
exists.intro x H2x)
|
||||||
|
|
Loading…
Reference in a new issue