refactor(library/data/real/division): remove unnecessary 'xrewrite'
This commit is contained in:
parent
3215af3926
commit
3cd81051c6
1 changed files with 6 additions and 6 deletions
|
@ -228,7 +228,7 @@ theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_
|
|||
apply rat.le.trans,
|
||||
apply rat.mul_le_mul,
|
||||
apply Hs,
|
||||
xrewrite [-(mul_one 1), -(div_mul_div Hsp Hspn), abs_mul],
|
||||
rewrite [-(mul_one 1), -(div_mul_div Hsp Hspn), abs_mul],
|
||||
apply rat.mul_le_mul,
|
||||
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hmlt),
|
||||
apply le_ps Hs Hsep,
|
||||
|
@ -252,7 +252,7 @@ theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_
|
|||
apply rat.le.trans,
|
||||
apply rat.mul_le_mul,
|
||||
apply Hs,
|
||||
xrewrite [-(mul_one 1), -(div_mul_div Hspm Hsp), abs_mul],
|
||||
rewrite [-(mul_one 1), -(div_mul_div Hspm Hsp), abs_mul],
|
||||
apply rat.mul_le_mul,
|
||||
rewrite -(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt)),
|
||||
apply le_ps Hs Hsep,
|
||||
|
@ -274,7 +274,7 @@ theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_
|
|||
apply rat.le.trans,
|
||||
apply rat.mul_le_mul,
|
||||
apply Hs,
|
||||
xrewrite [-(mul_one 1), -(div_mul_div Hspm Hspn), abs_mul],
|
||||
rewrite [-(mul_one 1), -(div_mul_div Hspm Hspn), abs_mul],
|
||||
apply rat.mul_le_mul,
|
||||
rewrite -(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt)),
|
||||
apply le_ps Hs Hsep,
|
||||
|
@ -315,7 +315,7 @@ theorem mul_inv {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul s (s_inv H
|
|||
existsi max (ps Hs Hsep) j,
|
||||
intro n Hn,
|
||||
have Hnz : s_inv Hs ((K₂ s (s_inv Hs)) * 2 * n) ≠ 0, from s_inv_ne_zero Hs Hsep _,
|
||||
xrewrite [↑smul, ↑one, rat.mul.comm, -(mul_one_div_cancel Hnz),
|
||||
rewrite [↑smul, ↑one, rat.mul.comm, -(mul_one_div_cancel Hnz),
|
||||
-rat.mul_sub_left_distrib, abs_mul],
|
||||
apply rat.le.trans,
|
||||
apply rat.mul_le_mul_of_nonneg_right,
|
||||
|
@ -334,13 +334,13 @@ theorem mul_inv {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul s (s_inv H
|
|||
s_ne_zero_of_ge_p Hs Hsep
|
||||
(show ps Hs Hsep ≤ ((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n),
|
||||
by rewrite *pnat.mul.assoc; apply pnat.mul_le_mul_right),
|
||||
xrewrite [(s_inv_of_sep_gt_p Hs Hsep Hp), (div_div Hnz')],
|
||||
rewrite [(s_inv_of_sep_gt_p Hs Hsep Hp), (div_div Hnz')],
|
||||
apply rat.le.trans,
|
||||
apply rat.mul_le_mul_of_nonneg_left,
|
||||
apply Hs,
|
||||
apply le_of_lt,
|
||||
apply rat_of_pnat_is_pos,
|
||||
xrewrite [rat.mul.left_distrib, mul.comm ((ps Hs Hsep) * (ps Hs Hsep)), *pnat.mul.assoc,
|
||||
rewrite [rat.mul.left_distrib, mul.comm ((ps Hs Hsep) * (ps Hs Hsep)), *pnat.mul.assoc,
|
||||
*(@inv_mul_eq_mul_inv (K₂ s (s_inv Hs))), -*rat.mul.assoc, *inv_cancel_left,
|
||||
*one_mul, -(add_halves j)],
|
||||
apply rat.add_le_add,
|
||||
|
|
Loading…
Reference in a new issue