feat(compiler): add simplification step for definitions generated using definitional package

This commit is contained in:
Leonardo de Moura 2015-09-11 15:02:30 -07:00
parent f134960492
commit 3d10c9daf8
5 changed files with 244 additions and 2 deletions

View file

@ -1 +1 @@
add_library(compiler OBJECT elim_rec.cpp eta_expansion.cpp)
add_library(compiler OBJECT rec_args.cpp eta_expansion.cpp simp_pr1_rec.cpp elim_rec.cpp)

View file

@ -11,7 +11,9 @@ Author: Leonardo de Moura
#include "library/normalize.h"
#include "library/util.h"
#include "compiler/eta_expansion.h"
#include "compiler/simp_pr1_rec.h"
void pp_detail(lean::environment const & env, lean::expr const & e);
void pp(lean::environment const & env, lean::expr const & e);
namespace lean {
@ -26,6 +28,15 @@ static expr expand_aux_recursors(environment const & env, expr const & e) {
class elim_rec_fn {
environment m_env;
buffer<declaration> & m_aux_decls;
bool check(declaration const & d, expr const & v) {
type_checker tc(m_env);
expr t = tc.check(v, d.get_univ_params()).first;
if (!tc.is_def_eq(d.get_type(), t).first)
throw exception("elim_rec failed");
return true;
}
public:
elim_rec_fn(environment const & env, buffer<declaration> & aux_decls): m_env(env), m_aux_decls(aux_decls) {}
@ -33,8 +44,10 @@ public:
expr v = d.get_value();
v = expand_aux_recursors(m_env, v);
v = eta_expand(m_env, v);
v = simp_pr1_rec(m_env, v);
::pp(m_env, v);
// TODO(Leo)
check(d, v);
return d;
}
};

View file

@ -70,7 +70,7 @@ class eta_expand_fn : public replace_visitor {
virtual expr visit_binding(expr const & b) {
expr new_domain = visit(binding_domain(b));
expr l = mk_local(m_tc.mk_fresh_name(), new_domain);
expr new_body = abstract(visit(instantiate(binding_body(b), l)), l);
expr new_body = abstract_local(visit(instantiate(binding_body(b), l)), l);
return update_binding(b, new_domain, new_body);
}

View file

@ -0,0 +1,174 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "kernel/type_checker.h"
#include "kernel/abstract.h"
#include "kernel/instantiate.h"
#include "kernel/inductive/inductive.h"
#include "library/replace_visitor.h"
#include "library/constants.h"
#include "library/util.h"
#include "compiler/rec_args.h"
namespace lean {
class simp_pr1_rec_fn : public replace_visitor {
environment m_env;
name_generator m_ngen;
type_checker m_tc;
struct failed {};
struct elim_nested_pr1_fn : public replace_visitor {
buffer<bool> const & minor_is_rec_arg;
buffer<expr> const & minor_ctx;
elim_nested_pr1_fn(buffer<bool> const & b1, buffer<expr> const & b2):
minor_is_rec_arg(b1), minor_ctx(b2) {
lean_assert(minor_is_rec_arg.size() == minor_ctx.size());
}
bool is_rec_arg(expr const & e) {
if (!is_local(e))
return false;
for (unsigned i = 0; i < minor_ctx.size(); i++) {
if (minor_is_rec_arg[i] && mlocal_name(minor_ctx[i]) == mlocal_name(e))
return true;
}
return false;
}
virtual expr visit_app(expr const & e) {
expr const & f = get_app_fn(e);
if (is_constant(f) && const_name(f) == get_prod_pr1_name()) {
buffer<expr> args;
get_app_args(e, args);
if (args.size() >= 3 && is_rec_arg(args[2])) {
for (unsigned i = 3; i < args.size(); i++)
args[i] = visit(args[i]);
return mk_app(args[2], args.size() - 3, args.data() + 3);
}
}
return replace_visitor::visit_app(e);
}
virtual expr visit_local(expr const & e) {
if (is_rec_arg(e))
throw failed();
return replace_visitor::visit_local(e);
}
};
optional<expr> simplify(expr const & e) {
expr const & f = get_app_fn(e);
if (!is_constant(f) || const_name(f) != get_prod_pr1_name())
return none_expr();
buffer<expr> args;
get_app_args(e, args);
if (args.size() < 3)
return none_expr();
for (unsigned i = 3; i < args.size(); i++)
args[i] = visit(args[i]);
expr const & rec = args[2];
buffer<expr> rec_args;
expr const & rec_fn = get_app_args(rec, rec_args);
if (!is_constant(rec_fn))
return none_expr();
auto I_name = inductive::is_elim_rule(m_env, const_name(rec_fn));
if (!I_name)
return none_expr();
buffer<buffer<bool>> is_rec_arg;
get_rec_args(m_env, *I_name, is_rec_arg);
unsigned nparams = *inductive::get_num_params(m_env, *I_name);
unsigned ntypeformers = *inductive::get_num_type_formers(m_env, *I_name);
unsigned nminors = *inductive::get_num_minor_premises(m_env, *I_name);
if (rec_args.size() < nparams + ntypeformers + nminors)
return none_expr();
// update type formers
for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
// Check whether each type former is of the form
// (lambda ctx, prod c1 c2), and replace it with (lambda ctx, c1)
expr typeformer = rec_args[i];
buffer<expr> typeformer_ctx;
expr typeformer_body = fun_to_telescope(m_ngen, typeformer, typeformer_ctx, optional<binder_info>());
buffer<expr> typeformer_body_args;
expr typeformer_body_fn = get_app_args(typeformer_body, typeformer_body_args);
if (!is_constant(typeformer_body_fn) || const_name(typeformer_body_fn) != get_prod_name() || typeformer_body_args.size() != 2) {
return none_expr();
}
typeformer_body = typeformer_body_args[0];
rec_args[i] = Fun(typeformer_ctx, typeformer_body);
}
// update minor premises
for (unsigned i = nparams + ntypeformers, j = 0; i < nparams + ntypeformers + nminors; i++, j++) {
buffer<bool> const & minor_is_rec_arg = is_rec_arg[j];
expr minor = rec_args[i];
buffer<expr> minor_ctx;
expr minor_body = fun_to_telescope(m_ngen, minor, minor_ctx, optional<binder_info>());
if (minor_is_rec_arg.size() != minor_ctx.size()) {
return none_expr();
}
// We have to check:
// 1- For each local r in the context minor_ctx s.t. r is marked as recursive in minor_is_rec_arg,
// its type is of the form (prod A B). The new type will be just A.
// 2- minor body is of the form (prod.mk A B c1 c2)
// 3- In c1, all occurrences of recursive arguments r are of the form (prod.pr1 A B r)
// Step 1.
for (unsigned i = 0; i < minor_ctx.size(); i++) {
if (minor_is_rec_arg[i]) {
expr type = m_tc.whnf(mlocal_type(minor_ctx[i])).first;
buffer<expr> type_args;
expr type_fn = get_app_args(type, type_args);
if (!is_constant(type_fn) || const_name(type_fn) != get_prod_name() || type_args.size() != 2)
return none_expr();
minor_ctx[i] = update_mlocal(minor_ctx[i], type_args[0]);
}
}
// Step 2
buffer<expr> minor_body_args;
expr minor_body_fn = get_app_args(minor_body, minor_body_args);
if (!is_constant(minor_body_fn) || const_name(minor_body_fn) != get_prod_mk_name() || minor_body_args.size() != 4)
return none_expr();
minor_body = minor_body_args[2];
// Step 3
try {
elim_nested_pr1_fn elim(minor_is_rec_arg, minor_ctx);
minor_body = elim(minor_body);
} catch (failed &) {
return none_expr();
}
// Update minor premise
rec_args[i] = Fun(minor_ctx, minor_body);
}
expr new_rec = mk_app(rec_fn, rec_args.size(), rec_args.data());
return some_expr(mk_app(new_rec, args.size() - 3, args.data() + 3));
}
virtual expr visit_app(expr const & e) {
if (auto r = simplify(e))
return *r;
else
return replace_visitor::visit_app(e);
}
virtual expr visit_binding(expr const & b) {
expr new_domain = visit(binding_domain(b));
expr l = mk_local(m_ngen.next(), new_domain);
expr new_body = abstract_local(visit(instantiate(binding_body(b), l)), l);
return update_binding(b, new_domain, new_body);
}
public:
simp_pr1_rec_fn(environment const & env):m_env(env), m_tc(env, m_ngen.mk_child()) {}
};
expr simp_pr1_rec(environment const & env, expr const & e) {
return simp_pr1_rec_fn(env)(e);
}
}

View file

@ -0,0 +1,55 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "kernel/environment.h"
namespace lean {
/** \brief Simplify subterms of the form (pr1 (C.rec ...)) where each minor premise of <tt>C.rec</tt>
is of the form <tt>(lambda ctx, prod.mk V1 V2)</tt>, and every occurrence of a "recursive argument" r
in \c V1 is of the form <tt>pr1 r</tt>.
We use this simplifier because the definitional package is based on a "course of values" recursor (aka C.brec_on).
However, in many case, the generated definition only accesses the immediate recursive value, and consequently can
be simplified.
Example: given, the recursive definition
definition append {T : Type} : list T list T list T
| [] l := l
| (h :: s) t := h :: (append s t)
The definitional package generates (remark: we are hiding implict arguments).
λ (T : Type) (a : list T),
list.brec_on a
(λ (a : list T) (b : list.below a) (a_1 : list T),
list.cases_on a (λ (b : list.below list.nil), a_1)
(λ (a_1_1 : T) (a_2 : list T) (b : list.below (list.cons a_1_1 a_2)), list.cons a_1_1 (prod.pr1 b a_1))
b)
After unfolding auxiliary recursors and simplifying, we have:
λ (T : Type) (a x : list T),
prod.pr1
(list.rec (λ (a : list T), (a, poly_unit.star))
(λ (a : T) (a_1 : list T) (v_0 : (list T list T) × list.below a_1),
(λ (a_2 : list T),
(list.cons a (prod.pr1 v_0 a_2), v_0)))
a)
x
Given the term above, the function simp_pr1_rec produces:
λ (T : Type) (a x : list T),
list.rec
(λ (a : list T), a)
(λ (a : T) (a_1 : list T) (v_0 : list T list T) (a_2 : list T),
list.cons a (v_0 a_2))
a
x
*/
expr simp_pr1_rec(environment const & env, expr const & e);
}