feat(library/simplifier): convert disequalities (a ≠ b) into equations '(a = b) = false'

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-15 15:30:16 -08:00
parent 1176093afa
commit 3daac17ea8
7 changed files with 18 additions and 0 deletions

View file

@ -214,6 +214,9 @@ theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
:= boolext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2)
theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : (a = b) = false
:= eqf_intro H
theorem or_comm (a b : Bool) : (a b) = (b a)
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))

Binary file not shown.

View file

@ -63,6 +63,7 @@ MK_CONSTANT(boolext_fn, name("boolext"));
MK_CONSTANT(iff_intro_fn, name("iff_intro"));
MK_CONSTANT(eqt_intro_fn, name("eqt_intro"));
MK_CONSTANT(eqf_intro_fn, name("eqf_intro"));
MK_CONSTANT(neq_elim_fn, name("neq_elim"));
MK_CONSTANT(or_comm_fn, name("or_comm"));
MK_CONSTANT(or_assoc_fn, name("or_assoc"));
MK_CONSTANT(or_id_fn, name("or_id"));

View file

@ -180,6 +180,9 @@ inline expr mk_eqt_intro_th(expr const & e1, expr const & e2) { return mk_app({m
expr mk_eqf_intro_fn();
bool is_eqf_intro_fn(expr const & e);
inline expr mk_eqf_intro_th(expr const & e1, expr const & e2) { return mk_app({mk_eqf_intro_fn(), e1, e2}); }
expr mk_neq_elim_fn();
bool is_neq_elim_fn(expr const & e);
inline expr mk_neq_elim_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_neq_elim_fn(), e1, e2, e3, e4}); }
expr mk_or_comm_fn();
bool is_or_comm_fn(expr const & e);
inline expr mk_or_comm_th(expr const & e1, expr const & e2) { return mk_app({mk_or_comm_fn(), e1, e2}); }

View file

@ -46,6 +46,13 @@ class to_ceqs_fn {
list<expr_pair> apply(expr const & e, expr const & H) {
if (is_eq(e)) {
return mk_singleton(e, H);
} else if (is_neq(e)) {
expr T = arg(e, 1);
expr lhs = arg(e, 2);
expr rhs = arg(e, 3);
expr new_e = mk_eq(Bool, mk_eq(T, lhs, rhs), False);
expr new_H = mk_neq_elim_th(T, lhs, rhs, H);
return mk_singleton(new_e, new_H);
} else if (is_not(e)) {
expr a = arg(e, 1);
expr new_e = mk_eq(Bool, a, False);

View file

@ -19,6 +19,7 @@ namespace lean {
[if P then Q else R] ---> P -> [Q], not P -> [Q]
[P -> Q] ---> P -> [Q]
[forall x : A, P] ---> forall x : A, [P]
[a b] ---> (a = b) = false
P ---> P = true (if none of the rules above apply and P is not an equality)

View file

@ -1,4 +1,5 @@
local env = get_environment()
assert(env:find_object("neq_elim"))
function show_ceqs(ceqs)
for i = 1, #ceqs do
@ -24,6 +25,7 @@ parse_lean_cmds([[
axiom Ax3 : forall x : Nat, not (x = 1) -> if (x < 0) then (g x x = 0) else (g x x < 0 /\ g x 0 = 1 /\ g 0 x = 2)
axiom Ax4 : forall x y : Nat, f x = x
axiom Ax5 : forall x y : Nat, f x = y /\ g x y = x
axiom Ax6 : forall x : Nat, f x 0
]])
test_ceq("Ax1", 2)
@ -31,6 +33,7 @@ test_ceq("Ax2", 1)
test_ceq("Ax3", 4)
test_ceq("Ax4", 0)
test_ceq("Ax5", 1)
test_ceq("Ax6", 1)
-- test_ceq("eta", 1)
test_ceq("not_not_eq", 1)
test_ceq("or_comm", 1)