refactor(library): use []
binder annotation when declaring instances
This commit is contained in:
parent
1cd44e894b
commit
3ede8e9150
21 changed files with 55 additions and 56 deletions
|
@ -108,7 +108,7 @@ namespace morphism
|
||||||
... = retraction_of f ∘ f : {id_left f}
|
... = retraction_of f ∘ f : {id_left f}
|
||||||
... = id : retraction_compose f)
|
... = id : retraction_compose f)
|
||||||
|
|
||||||
theorem is_retraction_comp [instance] (Hf : is_retraction f) (Hg : is_retraction g)
|
theorem is_retraction_comp [instance] [Hf : is_retraction f] [Hg : is_retraction g]
|
||||||
: is_retraction (g ∘ f) :=
|
: is_retraction (g ∘ f) :=
|
||||||
have aux : f ∘ section_of f ∘ section_of g = (f ∘ section_of f) ∘ section_of g,
|
have aux : f ∘ section_of f ∘ section_of g = (f ∘ section_of f) ∘ section_of g,
|
||||||
from !assoc,
|
from !assoc,
|
||||||
|
@ -121,7 +121,7 @@ namespace morphism
|
||||||
... = g ∘ section_of g : {id_left (section_of g)}
|
... = g ∘ section_of g : {id_left (section_of g)}
|
||||||
... = id : compose_section)
|
... = id : compose_section)
|
||||||
|
|
||||||
theorem is_inverse_comp [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) :=
|
theorem is_inverse_comp [instance] [Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
|
||||||
!is_iso_of_is_retraction_of_is_section
|
!is_iso_of_is_retraction_of_is_section
|
||||||
|
|
||||||
structure isomorphic (a b : ob) :=
|
structure isomorphic (a b : ob) :=
|
||||||
|
|
|
@ -48,7 +48,7 @@ definition weak_funext_of_naive_funext : naive_funext → weak_funext :=
|
||||||
|
|
||||||
context
|
context
|
||||||
universes l k
|
universes l k
|
||||||
parameters (wf : weak_funext.{l k}) {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
|
parameters [wf : weak_funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
|
||||||
|
|
||||||
definition is_contr_sigma_homotopy [instance] : is_contr (Σ (g : Π x, B x), f ∼ g) :=
|
definition is_contr_sigma_homotopy [instance] : is_contr (Σ (g : Π x, B x), f ∼ g) :=
|
||||||
is_contr.mk (sigma.mk f (homotopy.refl f))
|
is_contr.mk (sigma.mk f (homotopy.refl f))
|
||||||
|
@ -78,7 +78,6 @@ context
|
||||||
@transport _ (λ gh, Q (pr1 gh) (pr2 gh)) (sigma.mk f (homotopy.refl f)) (sigma.mk g h)
|
@transport _ (λ gh, Q (pr1 gh) (pr2 gh)) (sigma.mk f (homotopy.refl f)) (sigma.mk g h)
|
||||||
(@center_eq _ is_contr_sigma_homotopy _ _) d
|
(@center_eq _ is_contr_sigma_homotopy _ _) d
|
||||||
|
|
||||||
|
|
||||||
local attribute weak_funext [reducible]
|
local attribute weak_funext [reducible]
|
||||||
local attribute homotopy_ind [reducible]
|
local attribute homotopy_ind [reducible]
|
||||||
definition homotopy_ind_comp : homotopy_ind f (homotopy.refl f) = d :=
|
definition homotopy_ind_comp : homotopy_ind f (homotopy.refl f) = d :=
|
||||||
|
@ -93,15 +92,15 @@ local attribute weak_funext [reducible]
|
||||||
theorem funext_of_weak_funext (wf : weak_funext.{l k}) : funext.{l k} :=
|
theorem funext_of_weak_funext (wf : weak_funext.{l k}) : funext.{l k} :=
|
||||||
funext.mk (λ A B f g,
|
funext.mk (λ A B f g,
|
||||||
let eq_to_f := (λ g' x, f = g') in
|
let eq_to_f := (λ g' x, f = g') in
|
||||||
let sim2path := homotopy_ind _ f eq_to_f idp in
|
let sim2path := homotopy_ind f eq_to_f idp in
|
||||||
have t1 : sim2path f (homotopy.refl f) = idp,
|
have t1 : sim2path f (homotopy.refl f) = idp,
|
||||||
proof homotopy_ind_comp _ f eq_to_f idp qed,
|
proof homotopy_ind_comp f eq_to_f idp qed,
|
||||||
have t2 : apD10 (sim2path f (homotopy.refl f)) = (homotopy.refl f),
|
have t2 : apD10 (sim2path f (homotopy.refl f)) = (homotopy.refl f),
|
||||||
proof ap apD10 t1 qed,
|
proof ap apD10 t1 qed,
|
||||||
have sect : apD10 ∘ (sim2path g) ∼ id,
|
have sect : apD10 ∘ (sim2path g) ∼ id,
|
||||||
proof (homotopy_ind _ f (λ g' x, apD10 (sim2path g' x) = x) t2) g qed,
|
proof (homotopy_ind f (λ g' x, apD10 (sim2path g' x) = x) t2) g qed,
|
||||||
have retr : (sim2path g) ∘ apD10 ∼ id,
|
have retr : (sim2path g) ∘ apD10 ∼ id,
|
||||||
from (λ h, eq.rec_on h (homotopy_ind_comp _ f _ idp)),
|
from (λ h, eq.rec_on h (homotopy_ind_comp f _ idp)),
|
||||||
is_equiv.adjointify apD10 (sim2path g) sect retr)
|
is_equiv.adjointify apD10 (sim2path g) sect retr)
|
||||||
|
|
||||||
definition funext_from_naive_funext : naive_funext -> funext :=
|
definition funext_from_naive_funext : naive_funext -> funext :=
|
||||||
|
|
|
@ -17,7 +17,7 @@ private definition path_coll (A : Type) := ∀ x y : A, coll (x = y)
|
||||||
|
|
||||||
context
|
context
|
||||||
parameter {A : Type}
|
parameter {A : Type}
|
||||||
hypothesis (h : decidable_eq A)
|
hypothesis [h : decidable_eq A]
|
||||||
variables {x y : A}
|
variables {x y : A}
|
||||||
|
|
||||||
private definition pc [reducible] : path_coll A :=
|
private definition pc [reducible] : path_coll A :=
|
||||||
|
|
|
@ -185,10 +185,10 @@ namespace inhabited
|
||||||
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||||||
inhabited.rec H2 H1
|
inhabited.rec H2 H1
|
||||||
|
|
||||||
definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
|
definition fun_inhabited [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
|
||||||
destruct H (λb, mk (λa, b))
|
destruct H (λb, mk (λa, b))
|
||||||
|
|
||||||
definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) :
|
definition dfun_inhabited [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
||||||
inhabited (Πx, B x) :=
|
inhabited (Πx, B x) :=
|
||||||
mk (λa, destruct (H a) (λb, b))
|
mk (λa, destruct (H a) (λb, b))
|
||||||
|
|
||||||
|
@ -241,40 +241,40 @@ section
|
||||||
definition empty.decidable [instance] : decidable empty :=
|
definition empty.decidable [instance] : decidable empty :=
|
||||||
inr not_empty
|
inr not_empty
|
||||||
|
|
||||||
definition prod.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (prod p q) :=
|
definition prod.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (prod p q) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp : p, rec_on Hq
|
(assume Hp : p, rec_on Hq
|
||||||
(assume Hq : q, inl (prod.mk Hp Hq))
|
(assume Hq : q, inl (prod.mk Hp Hq))
|
||||||
(assume Hnq : ¬q, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hq Hnq))))
|
(assume Hnq : ¬q, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hq Hnq))))
|
||||||
(assume Hnp : ¬p, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hp Hnp)))
|
(assume Hnp : ¬p, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hp Hnp)))
|
||||||
|
|
||||||
definition sum.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (sum p q) :=
|
definition sum.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (sum p q) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp : p, inl (sum.inl Hp))
|
(assume Hp : p, inl (sum.inl Hp))
|
||||||
(assume Hnp : ¬p, rec_on Hq
|
(assume Hnp : ¬p, rec_on Hq
|
||||||
(assume Hq : q, inl (sum.inr Hq))
|
(assume Hq : q, inl (sum.inr Hq))
|
||||||
(assume Hnq : ¬q, inr (λ H : sum p q, sum.rec_on H (λ Hp, absurd Hp Hnp) (λ Hq, absurd Hq Hnq))))
|
(assume Hnq : ¬q, inr (λ H : sum p q, sum.rec_on H (λ Hp, absurd Hp Hnp) (λ Hq, absurd Hq Hnq))))
|
||||||
|
|
||||||
definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) :=
|
definition not.decidable [instance] [Hp : decidable p] : decidable (¬p) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp, inr (not_not_intro Hp))
|
(assume Hp, inr (not_not_intro Hp))
|
||||||
(assume Hnp, inl Hnp)
|
(assume Hnp, inl Hnp)
|
||||||
|
|
||||||
definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
|
definition implies.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp : p, rec_on Hq
|
(assume Hp : p, rec_on Hq
|
||||||
(assume Hq : q, inl (assume H, Hq))
|
(assume Hq : q, inl (assume H, Hq))
|
||||||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||||||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||||||
|
|
||||||
definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) :=
|
definition iff.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
|
||||||
show decidable (prod (p → q) (q → p)), from _
|
show decidable (prod (p → q) (q → p)), from _
|
||||||
end
|
end
|
||||||
|
|
||||||
definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a)
|
definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a)
|
||||||
definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b)
|
definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b)
|
||||||
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
||||||
definition decidable_ne [instance] {A : Type} (H : decidable_eq A) : decidable_rel (@ne A) :=
|
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : decidable_rel (@ne A) :=
|
||||||
show ∀ x y : A, decidable (x = y → empty), from _
|
show ∀ x y : A, decidable (x = y → empty), from _
|
||||||
|
|
||||||
definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A :=
|
definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A :=
|
||||||
|
|
|
@ -110,7 +110,7 @@ namespace morphism
|
||||||
... = retraction_of f ∘ f : {id_left f}
|
... = retraction_of f ∘ f : {id_left f}
|
||||||
... = id : !retraction_compose)
|
... = id : !retraction_compose)
|
||||||
|
|
||||||
theorem composition_is_retraction [instance] (Hf : is_retraction f) (Hg : is_retraction g)
|
theorem composition_is_retraction [instance] [Hf : is_retraction f] [Hg : is_retraction g]
|
||||||
: is_retraction (g ∘ f) :=
|
: is_retraction (g ∘ f) :=
|
||||||
is_retraction.mk
|
is_retraction.mk
|
||||||
(calc
|
(calc
|
||||||
|
@ -120,7 +120,7 @@ namespace morphism
|
||||||
... = g ∘ section_of g : {id_left (section_of g)}
|
... = g ∘ section_of g : {id_left (section_of g)}
|
||||||
... = id : !compose_section)
|
... = id : !compose_section)
|
||||||
|
|
||||||
theorem composition_is_inverse [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) :=
|
theorem composition_is_inverse [instance] [Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
|
||||||
!section_retraction_imp_iso
|
!section_retraction_imp_iso
|
||||||
|
|
||||||
structure isomorphic (a b : ob) :=
|
structure isomorphic (a b : ob) :=
|
||||||
|
|
|
@ -78,7 +78,7 @@ namespace is_congruence
|
||||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||||
{g : T2 → T3} (C2 : is_congruence R2 R3 g)
|
{g : T2 → T3} (C2 : is_congruence R2 R3 g)
|
||||||
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
||||||
{f : T1 → T2} (C1 : is_congruence R1 R2 f) :
|
{f : T1 → T2} [C1 : is_congruence R1 R2 f] :
|
||||||
is_congruence R1 R3 (λx, g (f x)) :=
|
is_congruence R1 R3 (λx, g (f x)) :=
|
||||||
is_congruence.mk (λx1 x2 H, app C2 (app C1 H))
|
is_congruence.mk (λx1 x2 H, app C2 (app C1 H))
|
||||||
|
|
||||||
|
@ -88,8 +88,8 @@ namespace is_congruence
|
||||||
{T4 : Type} {R4 : T4 → T4 → Prop}
|
{T4 : Type} {R4 : T4 → T4 → Prop}
|
||||||
{g : T2 → T3 → T4} (C3 : is_congruence2 R2 R3 R4 g)
|
{g : T2 → T3 → T4} (C3 : is_congruence2 R2 R3 R4 g)
|
||||||
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
||||||
{f1 : T1 → T2} (C1 : is_congruence R1 R2 f1)
|
{f1 : T1 → T2} [C1 : is_congruence R1 R2 f1]
|
||||||
{f2 : T1 → T3} (C2 : is_congruence R1 R3 f2) :
|
{f2 : T1 → T3} [C2 : is_congruence R1 R3 f2] :
|
||||||
is_congruence R1 R4 (λx, g (f1 x) (f2 x)) :=
|
is_congruence R1 R4 (λx, g (f1 x) (f2 x)) :=
|
||||||
is_congruence.mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
is_congruence.mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
||||||
|
|
||||||
|
|
|
@ -215,7 +215,7 @@ list.induction_on l
|
||||||
from H3 ▸ rfl,
|
from H3 ▸ rfl,
|
||||||
!exists.intro (!exists.intro H4)))
|
!exists.intro (!exists.intro H4)))
|
||||||
|
|
||||||
definition mem.is_decidable [instance] (H : decidable_eq T) (x : T) (l : list T) : decidable (x ∈ l) :=
|
definition mem.is_decidable [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
|
||||||
list.rec_on l
|
list.rec_on l
|
||||||
(decidable.inr (not_of_iff_false !mem_nil))
|
(decidable.inr (not_of_iff_false !mem_nil))
|
||||||
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
|
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
|
||||||
|
|
|
@ -63,7 +63,7 @@ end nat
|
||||||
section
|
section
|
||||||
open nat decidable
|
open nat decidable
|
||||||
|
|
||||||
definition decidable_bex [instance] (n : nat) (P : nat → Prop) (H : decidable_pred P) : decidable (bex n P) :=
|
definition decidable_bex [instance] (n : nat) (P : nat → Prop) [H : decidable_pred P] : decidable (bex n P) :=
|
||||||
nat.rec_on n
|
nat.rec_on n
|
||||||
(inr (not_bex_zero P))
|
(inr (not_bex_zero P))
|
||||||
(λ a ih, decidable.rec_on ih
|
(λ a ih, decidable.rec_on ih
|
||||||
|
@ -72,7 +72,7 @@ section
|
||||||
(λ hpa : P a, inl (bex_succ_of_pred hpa))
|
(λ hpa : P a, inl (bex_succ_of_pred hpa))
|
||||||
(λ hna : ¬ P a, inr (not_bex_succ hneg hna))))
|
(λ hna : ¬ P a, inr (not_bex_succ hneg hna))))
|
||||||
|
|
||||||
definition decidable_ball [instance] (n : nat) (P : nat → Prop) (H : decidable_pred P) : decidable (ball n P) :=
|
definition decidable_ball [instance] (n : nat) (P : nat → Prop) [H : decidable_pred P] : decidable (ball n P) :=
|
||||||
nat.rec_on n
|
nat.rec_on n
|
||||||
(inl (ball_zero P))
|
(inl (ball_zero P))
|
||||||
(λ n₁ ih, decidable.rec_on ih
|
(λ n₁ ih, decidable.rec_on ih
|
||||||
|
|
|
@ -28,7 +28,7 @@ namespace option
|
||||||
protected definition is_inhabited [instance] (A : Type) : inhabited (option A) :=
|
protected definition is_inhabited [instance] (A : Type) : inhabited (option A) :=
|
||||||
inhabited.mk none
|
inhabited.mk none
|
||||||
|
|
||||||
protected definition has_decidable_eq [instance] {A : Type} (H : decidable_eq A) : decidable_eq (option A) :=
|
protected definition has_decidable_eq [instance] {A : Type} [H : decidable_eq A] : decidable_eq (option A) :=
|
||||||
take o₁ o₂ : option A,
|
take o₁ o₂ : option A,
|
||||||
option.rec_on o₁
|
option.rec_on o₁
|
||||||
(option.rec_on o₂ (inl rfl) (take a₂, (inr (none_ne_some a₂))))
|
(option.rec_on o₂ (inl rfl) (take a₂, (inr (none_ne_some a₂))))
|
||||||
|
|
|
@ -17,12 +17,11 @@ namespace prod
|
||||||
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
|
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
|
||||||
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
|
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
|
||||||
|
|
||||||
protected definition is_inhabited [instance] : inhabited A → inhabited B → inhabited (prod A B) :=
|
protected definition is_inhabited [instance] [h₁ : inhabited A] [h₂ : inhabited B] : inhabited (prod A B) :=
|
||||||
take (H₁ : inhabited A) (H₂ : inhabited B),
|
inhabited.mk (default A, default B)
|
||||||
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (pair a b)))
|
|
||||||
|
|
||||||
protected definition has_decidable_eq [instance] : decidable_eq A → decidable_eq B → decidable_eq (A × B) :=
|
protected definition has_decidable_eq [instance] [h₁ : decidable_eq A] [h₂ : decidable_eq B] : decidable_eq (A × B) :=
|
||||||
take (H₁ : decidable_eq A) (H₂ : decidable_eq B) (u v : A × B),
|
take (u v : A × B),
|
||||||
have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from
|
have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, H ▸ and.intro rfl rfl)
|
(assume H, H ▸ and.intro rfl rfl)
|
||||||
|
|
|
@ -33,7 +33,7 @@ namespace sigma
|
||||||
∀(H₁ : p.1 == p'.1) (H₂ : p.2 == p'.2), p == p' :=
|
∀(H₁ : p.1 == p'.1) (H₂ : p.2 == p'.2), p == p' :=
|
||||||
destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂))
|
destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂))
|
||||||
|
|
||||||
protected definition is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) :
|
protected definition is_inhabited [instance] [H₁ : inhabited A] [H₂ : inhabited (B (default A))] :
|
||||||
inhabited (sigma B) :=
|
inhabited (sigma B) :=
|
||||||
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk ⟨default A, b⟩))
|
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk ⟨default A, b⟩))
|
||||||
|
|
||||||
|
|
|
@ -30,7 +30,7 @@ namespace subtype
|
||||||
protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} :=
|
protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} :=
|
||||||
inhabited.mk (tag a H)
|
inhabited.mk (tag a H)
|
||||||
|
|
||||||
protected definition has_decidable_eq [instance] (H : decidable_eq A) : decidable_eq {x | P x} :=
|
protected definition has_decidable_eq [instance] [H : decidable_eq A] : decidable_eq {x | P x} :=
|
||||||
take a1 a2 : {x | P x},
|
take a1 a2 : {x | P x},
|
||||||
have H1 : (a1 = a2) ↔ (elt_of a1 = elt_of a2), from
|
have H1 : (a1 = a2) ↔ (elt_of a1 = elt_of a2), from
|
||||||
iff.intro (assume H, eq.subst H rfl) (assume H, equal H),
|
iff.intro (assume H, eq.subst H rfl) (assume H, equal H),
|
||||||
|
|
|
@ -33,13 +33,13 @@ namespace sum
|
||||||
definition inr_inj {b₁ b₂ : B} : intro_right A b₁ = intro_right A b₂ → b₁ = b₂ :=
|
definition inr_inj {b₁ b₂ : B} : intro_right A b₁ = intro_right A b₂ → b₁ = b₂ :=
|
||||||
assume H, sum.no_confusion H (λe, e)
|
assume H, sum.no_confusion H (λe, e)
|
||||||
|
|
||||||
protected definition is_inhabited_left [instance] : inhabited A → inhabited (A + B) :=
|
protected definition is_inhabited_left [instance] [h : inhabited A] : inhabited (A + B) :=
|
||||||
assume H : inhabited A, inhabited.mk (inl (default A))
|
inhabited.mk (inl (default A))
|
||||||
|
|
||||||
protected definition is_inhabited_right [instance] : inhabited B → inhabited (A + B) :=
|
protected definition is_inhabited_right [instance] [h : inhabited B] : inhabited (A + B) :=
|
||||||
assume H : inhabited B, inhabited.mk (inr (default B))
|
inhabited.mk (inr (default B))
|
||||||
|
|
||||||
protected definition has_eq_decidable [instance] (h₁ : decidable_eq A) (h₂ : decidable_eq B) : ∀ s₁ s₂ : A + B, decidable (s₁ = s₂),
|
protected definition has_eq_decidable [instance] [h₁ : decidable_eq A] [h₂ : decidable_eq B] : ∀ s₁ s₂ : A + B, decidable (s₁ = s₂),
|
||||||
has_eq_decidable (inl a₁) (inl a₂) :=
|
has_eq_decidable (inl a₁) (inl a₂) :=
|
||||||
match h₁ a₁ a₂ with
|
match h₁ a₁ a₂ with
|
||||||
decidable.inl hp := decidable.inl (hp ▸ rfl),
|
decidable.inl hp := decidable.inl (hp ▸ rfl),
|
||||||
|
|
|
@ -18,7 +18,7 @@ namespace vector
|
||||||
|
|
||||||
variables {A B C : Type}
|
variables {A B C : Type}
|
||||||
|
|
||||||
protected definition is_inhabited [instance] (h : inhabited A) : ∀ (n : nat), inhabited (vector A n),
|
protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n),
|
||||||
is_inhabited 0 := inhabited.mk nil,
|
is_inhabited 0 := inhabited.mk nil,
|
||||||
is_inhabited (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
|
is_inhabited (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
|
||||||
|
|
||||||
|
|
|
@ -289,33 +289,33 @@ section
|
||||||
variables {p q : Prop}
|
variables {p q : Prop}
|
||||||
open decidable (rec_on inl inr)
|
open decidable (rec_on inl inr)
|
||||||
|
|
||||||
definition and.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) :=
|
definition and.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp : p, rec_on Hq
|
(assume Hp : p, rec_on Hq
|
||||||
(assume Hq : q, inl (and.intro Hp Hq))
|
(assume Hq : q, inl (and.intro Hp Hq))
|
||||||
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq))))
|
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq))))
|
||||||
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
|
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
|
||||||
|
|
||||||
definition or.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∨ q) :=
|
definition or.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∨ q) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp : p, inl (or.inl Hp))
|
(assume Hp : p, inl (or.inl Hp))
|
||||||
(assume Hnp : ¬p, rec_on Hq
|
(assume Hnp : ¬p, rec_on Hq
|
||||||
(assume Hq : q, inl (or.inr Hq))
|
(assume Hq : q, inl (or.inr Hq))
|
||||||
(assume Hnq : ¬q, inr (assume H : p ∨ q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
|
(assume Hnq : ¬q, inr (assume H : p ∨ q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
|
||||||
|
|
||||||
definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) :=
|
definition not.decidable [instance] [Hp : decidable p] : decidable (¬p) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
|
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
|
||||||
(assume Hnp, inl Hnp)
|
(assume Hnp, inl Hnp)
|
||||||
|
|
||||||
definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
|
definition implies.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
|
||||||
rec_on Hp
|
rec_on Hp
|
||||||
(assume Hp : p, rec_on Hq
|
(assume Hp : p, rec_on Hq
|
||||||
(assume Hq : q, inl (assume H, Hq))
|
(assume Hq : q, inl (assume H, Hq))
|
||||||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||||||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||||||
|
|
||||||
definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) :=
|
definition iff.decidable [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
|
||||||
show decidable ((p → q) ∧ (q → p)), from _
|
show decidable ((p → q) ∧ (q → p)), from _
|
||||||
|
|
||||||
end
|
end
|
||||||
|
@ -323,7 +323,7 @@ end
|
||||||
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||||||
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||||||
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
||||||
definition decidable_ne [instance] {A : Type} (H : decidable_eq A) : Π (a b : A), decidable (a ≠ b) :=
|
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) :=
|
||||||
show Π x y : A, decidable (x = y → false), from _
|
show Π x y : A, decidable (x = y → false), from _
|
||||||
|
|
||||||
inductive inhabited [class] (A : Type) : Type :=
|
inductive inhabited [class] (A : Type) : Type :=
|
||||||
|
@ -344,10 +344,10 @@ inhabited.rec (λa, a) H
|
||||||
definition Prop_inhabited [instance] : inhabited Prop :=
|
definition Prop_inhabited [instance] : inhabited Prop :=
|
||||||
inhabited.mk true
|
inhabited.mk true
|
||||||
|
|
||||||
definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
|
definition fun_inhabited [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
|
||||||
inhabited.rec_on H (λb, inhabited.mk (λa, b))
|
inhabited.rec_on H (λb, inhabited.mk (λa, b))
|
||||||
|
|
||||||
definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) :
|
definition dfun_inhabited [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
||||||
inhabited (Πx, B x) :=
|
inhabited (Πx, B x) :=
|
||||||
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b))
|
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b))
|
||||||
|
|
||||||
|
@ -357,7 +357,7 @@ intro : A → nonempty A
|
||||||
protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
||||||
nonempty.rec H2 H1
|
nonempty.rec H2 H1
|
||||||
|
|
||||||
theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A :=
|
theorem inhabited_imp_nonempty [instance] {A : Type} [H : inhabited A] : nonempty A :=
|
||||||
nonempty.intro (default A)
|
nonempty.intro (default A)
|
||||||
|
|
||||||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||||||
|
|
|
@ -20,13 +20,13 @@ measurable.rec_on s (λ f, f) a
|
||||||
definition nat.measurable [instance] : measurable nat :=
|
definition nat.measurable [instance] : measurable nat :=
|
||||||
measurable.mk (λ a, a)
|
measurable.mk (λ a, a)
|
||||||
|
|
||||||
definition option.measurable [instance] (A : Type) (s : measurable A) : measurable (option A) :=
|
definition option.measurable [instance] (A : Type) [s : measurable A] : measurable (option A) :=
|
||||||
measurable.mk (λ a, option.cases_on a zero (λ a, size_of a))
|
measurable.mk (λ a, option.cases_on a zero (λ a, size_of a))
|
||||||
|
|
||||||
definition prod.measurable [instance] (A B : Type) (sa : measurable A) (sb : measurable B) : measurable (prod A B) :=
|
definition prod.measurable [instance] (A B : Type) [sa : measurable A] [sb : measurable B] : measurable (prod A B) :=
|
||||||
measurable.mk (λ p, prod.cases_on p (λ a b, size_of a + size_of b))
|
measurable.mk (λ p, prod.cases_on p (λ a b, size_of a + size_of b))
|
||||||
|
|
||||||
definition sum.measurable [instance] (A B : Type) (sa : measurable A) (sb : measurable B) : measurable (sum A B) :=
|
definition sum.measurable [instance] (A B : Type) [sa : measurable A] [sb : measurable B] : measurable (sum A B) :=
|
||||||
measurable.mk (λ s, sum.cases_on s (λ a, size_of a) (λ b, size_of b))
|
measurable.mk (λ s, sum.cases_on s (λ a, size_of a) (λ b, size_of b))
|
||||||
|
|
||||||
definition bool.measurable [instance] : measurable bool :=
|
definition bool.measurable [instance] : measurable bool :=
|
||||||
|
|
|
@ -21,6 +21,7 @@ set_option class.conservative false
|
||||||
example (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
example (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
||||||
subst iff H1 H2
|
subst iff H1 H2
|
||||||
|
|
||||||
|
exit
|
||||||
example (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
example (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
||||||
H1 ▸ H2
|
H1 ▸ H2
|
||||||
|
|
||||||
|
|
|
@ -106,7 +106,7 @@ theorem exists_not_of_not_forall {A : Type} {P : A → Prop} [D : ∀x, decidabl
|
||||||
[D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) :
|
[D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) :
|
||||||
∃x, ¬P x :=
|
∃x, ¬P x :=
|
||||||
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
|
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
|
||||||
have H2 : ∀x, ¬¬P x, from @forall_not_of_not_exists _ _ (take x, not.decidable (D x)) H1,
|
have H2 : ∀x, ¬¬P x, from @forall_not_of_not_exists _ _ (take x, not.decidable) H1,
|
||||||
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
|
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
|
||||||
absurd H3 H)
|
absurd H3 H)
|
||||||
|
|
||||||
|
|
|
@ -33,6 +33,6 @@ subsingleton.intro (fun d1 d2,
|
||||||
|
|
||||||
protected theorem rec_subsingleton [instance] {p : Prop} [H : decidable p]
|
protected theorem rec_subsingleton [instance] {p : Prop} [H : decidable p]
|
||||||
{H1 : p → Type} {H2 : ¬p → Type}
|
{H1 : p → Type} {H2 : ¬p → Type}
|
||||||
(H3 : Π(h : p), subsingleton (H1 h)) (H4 : Π(h : ¬p), subsingleton (H2 h))
|
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
|
||||||
: subsingleton (decidable.rec_on H H1 H2) :=
|
: subsingleton (decidable.rec_on H H1 H2) :=
|
||||||
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
import logic data.prod
|
import logic data.prod
|
||||||
open prod
|
open prod
|
||||||
|
|
||||||
set_option class.unique_instances true
|
set_option class.unique_instances true set_option pp.implicit true
|
||||||
theorem tst (A : Type) (H₁ : inhabited A) (H₂ : inhabited A) : inhabited (A × A) :=
|
theorem tst (A : Type) (H₁ : inhabited A) (H₂ : inhabited A) : inhabited (A × A) :=
|
||||||
_
|
_
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
unique_instances.lean:6:0: error: ambiguous class-instance resolution, there is more than one solution
|
unique_instances.lean:6:0: error: ambiguous class-instance resolution, there is more than one solution
|
||||||
prod.is_inhabited H₂ H₂
|
@prod.is_inhabited A A H₂ H₂
|
||||||
and
|
and
|
||||||
prod.is_inhabited H₂ H₁
|
@prod.is_inhabited A A H₂ H₁
|
||||||
|
|
Loading…
Reference in a new issue