feat(library/data/finset): define subset for finsets

This commit is contained in:
Leonardo de Moura 2015-04-11 15:29:12 -07:00
parent dfef4c5daf
commit 3edf0dffdf
3 changed files with 50 additions and 20 deletions

View file

@ -287,6 +287,31 @@ calc ∅ ∩ s = s ∩ ∅ : intersection.comm
... = ∅ : intersection_empty ... = ∅ : intersection_empty
end intersection end intersection
/- subset -/
definition subset (s₁ s₂ : finset A) : Prop :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂, sublist (elt_of l₁) (elt_of l₂))
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
(λ s₁ a i, mem_perm p₂ (s₁ a (mem_perm (perm.symm p₁) i)))
(λ s₂ a i, mem_perm (perm.symm p₂) (s₂ a (mem_perm p₁ i)))))
infix `⊆`:50 := subset
theorem nil_sub (s : finset A) : ∅ ⊆ s :=
quot.induction_on s (λ l, list.nil_sub (elt_of l))
theorem sub_univ [h : fintype A] (s : finset A) : s ⊆ univ :=
quot.induction_on s (λ l a i, fintype.complete a)
theorem sub.refl (s : finset A) : s ⊆ s :=
quot.induction_on s (λ l, list.sub.refl (elt_of l))
theorem sub.trans {s₁ s₂ s₃ : finset A} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ :=
quot.induction_on₃ s₁ s₂ s₃ (λ l₁ l₂ l₃ h₁ h₂, list.sub.trans h₁ h₂)
theorem mem_of_sub_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h₁ h₂, h₁ a h₂)
/- upto -/ /- upto -/
section upto section upto
definition upto (n : nat) : finset nat := definition upto (n : nat) : finset nat :=

View file

@ -289,48 +289,48 @@ definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈
infix `⊆`:50 := sublist infix `⊆`:50 := sublist
lemma nil_sub (l : list T) : [] ⊆ l := theorem nil_sub (l : list T) : [] ⊆ l :=
λ b i, false.elim (iff.mp (mem_nil b) i) λ b i, false.elim (iff.mp (mem_nil b) i)
lemma sub.refl (l : list T) : l ⊆ l := theorem sub.refl (l : list T) : l ⊆ l :=
λ b i, i λ b i, i
lemma sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ := theorem sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ :=
λ b i, H₂ (H₁ i) λ b i, H₂ (H₁ i)
lemma sub_cons (a : T) (l : list T) : l ⊆ a::l := theorem sub_cons (a : T) (l : list T) : l ⊆ a::l :=
λ b i, or.inr i λ b i, or.inr i
lemma cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) := theorem cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) :=
λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin) λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin)
(λ e : b = a, or.inl e) (λ e : b = a, or.inl e)
(λ i : b ∈ l₁, or.inr (s i)) (λ i : b ∈ l₁, or.inr (s i))
lemma sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ := theorem sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inl i) λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inl i)
lemma sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ := theorem sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i) λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i)
lemma sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) := theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i) λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i)
lemma sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ := theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l), λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₁, from s xinl, have xinl₁ : x ∈ l₁, from s xinl,
mem_append_of_mem_or_mem (or.inl xinl₁) mem_append_of_mem_or_mem (or.inl xinl₁)
lemma sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ := theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l), λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₂, from s xinl, have xinl₁ : x ∈ l₂, from s xinl,
mem_append_of_mem_or_mem (or.inr xinl₁) mem_append_of_mem_or_mem (or.inr xinl₁)
lemma cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m := theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal) λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal)
(assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm) (assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm)
(assume xinl : x ∈ l, lsubm xinl) (assume xinl : x ∈ l, lsubm xinl)
lemma app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l := theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂), λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
or.elim (mem_or_mem_of_mem_append xinl₁l₂) or.elim (mem_or_mem_of_mem_append xinl₁l₂)
(λ xinl₁ : x ∈ l₁, l₁subl xinl₁) (λ xinl₁ : x ∈ l₁, l₁subl xinl₁)
@ -402,23 +402,23 @@ open qeq
notation l' `≈`:50 a `|` l:50 := qeq a l l' notation l' `≈`:50 a `|` l:50 := qeq a l l'
lemma qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂ theorem qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂
| [] a l₂ := qhead a l₂ | [] a l₂ := qhead a l₂
| (x::xs) a l₂ := qcons x (qeq_app xs a l₂) | (x::xs) a l₂ := qcons x (qeq_app xs a l₂)
lemma mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ := theorem mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ :=
take q, qeq.induction_on q take q, qeq.induction_on q
(λ l, !mem_cons) (λ l, !mem_cons)
(λ b l l' q r, or.inr r) (λ b l l' q r, or.inr r)
lemma mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ := theorem mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ :=
take q, qeq.induction_on q take q, qeq.induction_on q
(λ l x i, or.inr i) (λ l x i, or.inr i)
(λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl) (λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl)
(λ xeqb : x = b, xeqb ▸ mem_cons x l') (λ xeqb : x = b, xeqb ▸ mem_cons x l')
(λ xinl : x ∈ l, or.inr (r x xinl))) (λ xinl : x ∈ l, or.inr (r x xinl)))
lemma mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ := theorem mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ :=
take q, qeq.induction_on q take q, qeq.induction_on q
(λ l x i, i) (λ l x i, i)
(λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl') (λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl')
@ -427,12 +427,12 @@ take q, qeq.induction_on q
(λ xeqa : x = a, xeqa ▸ mem_cons x (b::l)) (λ xeqa : x = a, xeqa ▸ mem_cons x (b::l))
(λ xinl : x ∈ l, or.inr (or.inr xinl)))) (λ xinl : x ∈ l, or.inr (or.inr xinl))))
lemma length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) := theorem length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) :=
take q, qeq.induction_on q take q, qeq.induction_on q
(λ l, rfl) (λ l, rfl)
(λ b l l' q r, by rewrite [*length_cons, r]) (λ b l l' q r, by rewrite [*length_cons, r])
lemma qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') := theorem qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') :=
list.induction_on l list.induction_on l
(λ h : a ∈ nil, absurd h (not_mem_nil a)) (λ h : a ∈ nil, absurd h (not_mem_nil a))
(λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs) (λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs)
@ -446,7 +446,7 @@ list.induction_on l
have q₂ : x::xs ≈ a | x::l', from qcons x q, have q₂ : x::xs ≈ a | x::l', from qcons x q,
exists.intro (x::l') q₂)) exists.intro (x::l') q₂))
lemma qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) := theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q take q, qeq.induction_on q
(λ t, (λ t,
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl, have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
@ -460,7 +460,7 @@ take q, qeq.induction_on q
end, end,
exists.intro (b::l₁) (exists.intro l₂ aux)) exists.intro (b::l₁) (exists.intro l₂ aux))
lemma sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u := theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l), λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
have xinv : x ∈ v, from s (or.inr xinl), have xinv : x ∈ v, from s (or.inr xinl),
have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv, have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv,

View file

@ -96,6 +96,11 @@ namespace quot
{C : quot s₁ → quot s₂ → Prop} (q₁ : quot s₁) (q₂ : quot s₂) (H : ∀ a b, C ⟦a⟧ ⟦b⟧) : C q₁ q₂ := {C : quot s₁ → quot s₂ → Prop} (q₁ : quot s₁) (q₂ : quot s₂) (H : ∀ a b, C ⟦a⟧ ⟦b⟧) : C q₁ q₂ :=
quot.ind (λ a₁, quot.ind (λ a₂, H a₁ a₂) q₂) q₁ quot.ind (λ a₁, quot.ind (λ a₂, H a₁ a₂) q₂) q₁
protected theorem induction_on₃
[s₃ : setoid C]
{D : quot s₁ → quot s₂ → quot s₃ → Prop} (q₁ : quot s₁) (q₂ : quot s₂) (q₃ : quot s₃) (H : ∀ a b c, D ⟦a⟧ ⟦b⟧ ⟦c⟧)
: D q₁ q₂ q₃ :=
quot.ind (λ a₁, quot.ind (λ a₂, quot.ind (λ a₃, H a₁ a₂ a₃) q₃) q₂) q₁
end end
section section