chore(hott/cubical): change order of visible arguments in cube
This commit is contained in:
parent
54b1d1a9fe
commit
3f1cf3835f
1 changed files with 67 additions and 63 deletions
|
@ -1,7 +1,7 @@
|
|||
/-
|
||||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Floris van Doorn
|
||||
Author: Floris van Doorn, Jakob von Raumer
|
||||
|
||||
Cubes
|
||||
-/
|
||||
|
@ -17,12 +17,12 @@ namespace eq
|
|||
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
|
||||
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
|
||||
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
||||
(s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀)
|
||||
(s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂)
|
||||
(s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁)
|
||||
(s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁)
|
||||
(s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁)
|
||||
(s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁), Type :=
|
||||
(s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁)
|
||||
(s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀)
|
||||
(s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂), Type :=
|
||||
idc : cube ids ids ids ids ids ids
|
||||
|
||||
variables {A B : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ a a' : A}
|
||||
|
@ -37,114 +37,118 @@ namespace eq
|
|||
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
||||
{s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
||||
{b₁ b₂ b₃ b₄ : B}
|
||||
(c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂)
|
||||
|
||||
definition idc [reducible] [constructor] := @cube.idc
|
||||
definition idcube [reducible] [constructor] (a : A) := @cube.idc A a
|
||||
|
||||
variables (s₁₁₀ s₁₀₁)
|
||||
definition refl1 : cube s₁₁₀ s₁₁₀ vrfl vrfl vrfl vrfl :=
|
||||
by induction s₁₁₀; exact idc
|
||||
definition refl1 : cube s₀₁₁ s₀₁₁ hrfl hrfl vrfl vrfl :=
|
||||
by induction s₀₁₁; exact idc
|
||||
|
||||
definition refl2 : cube vrfl vrfl s₁₁₀ s₁₁₀ hrfl hrfl :=
|
||||
by induction s₁₁₀; exact idc
|
||||
|
||||
definition refl3 : cube hrfl hrfl hrfl hrfl s₁₀₁ s₁₀₁ :=
|
||||
definition refl2 : cube hrfl hrfl s₁₀₁ s₁₀₁ hrfl hrfl :=
|
||||
by induction s₁₀₁; exact idc
|
||||
|
||||
definition refl3 : cube vrfl vrfl vrfl vrfl s₁₁₀ s₁₁₀ :=
|
||||
by induction s₁₁₀; exact idc
|
||||
|
||||
variables {s₁₁₀ s₁₀₁}
|
||||
definition rfl1 : cube s₁₁₀ s₁₁₀ vrfl vrfl vrfl vrfl := !refl1
|
||||
definition rfl1 : cube s₀₁₁ s₀₁₁ hrfl hrfl vrfl vrfl := !refl1
|
||||
|
||||
definition rfl2 : cube vrfl vrfl s₁₁₀ s₁₁₀ hrfl hrfl := !refl2
|
||||
definition rfl2 : cube hrfl hrfl s₁₀₁ s₁₀₁ hrfl hrfl := !refl2
|
||||
|
||||
definition rfl3 : cube hrfl hrfl hrfl hrfl s₁₀₁ s₁₀₁ := !refl3
|
||||
definition rfl3 : cube vrfl vrfl vrfl vrfl s₁₁₀ s₁₁₀ := !refl3
|
||||
|
||||
-- Variables for composition
|
||||
variables {a₄₀₀ a₄₀₂ a₄₂₀ a₄₂₂ : A}
|
||||
variables {a₄₀₀ a₄₀₂ a₄₂₀ a₄₂₂ a₀₄₀ a₀₄₂ a₂₄₀ a₂₄₂ a₀₀₄ a₀₂₄ a₂₀₄ a₂₂₄ : A}
|
||||
{p₃₀₀ : a₂₀₀ = a₄₀₀} {p₃₀₂ : a₂₀₂ = a₄₀₂} {p₃₂₀ : a₂₂₀ = a₄₂₀} {p₃₂₂ : a₂₂₂ = a₄₂₂}
|
||||
{p₄₀₁ : a₄₀₀ = a₄₀₂} {p₄₁₀ : a₄₀₀ = a₄₂₀} {p₄₁₂ : a₄₀₂ = a₄₂₂} {p₄₂₁ : a₄₂₀ = a₄₂₂}
|
||||
{s₃₀₁ : square p₃₀₀ p₃₀₂ p₂₀₁ p₄₀₁}
|
||||
{s₃₁₀ : square p₂₁₀ p₄₁₀ p₃₀₀ p₃₂₀}
|
||||
{s₃₁₂ : square p₂₁₂ p₄₁₂ p₃₀₂ p₃₂₂}
|
||||
{s₃₂₁ : square p₃₂₀ p₃₂₂ p₂₂₁ p₄₂₁}
|
||||
{p₀₃₀ : a₀₂₀ = a₀₄₀} {p₀₃₂ : a₀₂₂ = a₀₄₂} {p₂₃₀ : a₂₂₀ = a₂₄₀} {p₂₃₂ : a₂₂₂ = a₂₄₂}
|
||||
{p₀₄₁ : a₀₄₀ = a₀₄₂} {p₁₄₀ : a₀₄₀ = a₂₄₀} {p₁₄₂ : a₀₄₂ = a₂₄₂} {p₂₄₁ : a₂₄₀ = a₂₄₂}
|
||||
{s₃₀₁ : square p₃₀₀ p₃₀₂ p₂₀₁ p₄₀₁} {s₃₁₀ : square p₂₁₀ p₄₁₀ p₃₀₀ p₃₂₀}
|
||||
{s₃₁₂ : square p₂₁₂ p₄₁₂ p₃₀₂ p₃₂₂} {s₃₂₁ : square p₃₂₀ p₃₂₂ p₂₂₁ p₄₂₁}
|
||||
{s₄₁₁ : square p₄₁₀ p₄₁₂ p₄₀₁ p₄₂₁}
|
||||
(d : cube s₃₁₀ s₃₁₂ s₂₁₁ s₄₁₁ s₃₀₁ s₃₂₁)
|
||||
{s₀₃₁ : square p₀₃₀ p₀₃₂ p₀₂₁ p₀₄₁} {s₁₃₀ : square p₀₃₀ p₂₃₀ p₁₂₀ p₁₄₀}
|
||||
{s₁₃₂ : square p₀₃₂ p₂₃₂ p₁₂₂ p₁₄₂} {s₂₃₁ : square p₂₃₀ p₂₃₂ p₂₂₁ p₂₄₁}
|
||||
{s₁₄₁ : square p₁₄₀ p₁₄₂ p₀₄₁ p₂₄₁}
|
||||
(d : cube s₂₁₁ s₄₁₁ s₃₀₁ s₃₂₁ s₃₁₀ s₃₁₂)
|
||||
(e : cube s₀₃₁ s₂₃₁ s₁₂₁ s₁₄₁ s₁₃₀ s₁₃₂)
|
||||
|
||||
/- Composition of Cubes -/
|
||||
|
||||
include c d
|
||||
definition concat1 : cube (s₁₁₀ ⬝h s₃₁₀) _ s₀₁₁ s₄₁₁ _ _ :=
|
||||
begin
|
||||
definition cube_concat1 : cube s₀₁₁ s₄₁₁ (s₁₀₁ ⬝h s₃₀₁) (s₁₂₁ ⬝h s₃₂₁) (s₁₁₀ ⬝v s₃₁₀) (s₁₁₂ ⬝v s₃₁₂) :=
|
||||
by induction d; exact c
|
||||
omit d
|
||||
|
||||
end
|
||||
include e
|
||||
definition cube_concat2 : cube (s₀₁₁ ⬝h s₀₃₁) (s₂₁₁ ⬝h s₂₃₁) s₁₀₁ s₁₄₁ (s₁₁₀ ⬝h s₁₃₀) (s₁₁₂ ⬝h s₁₃₂) :=
|
||||
by induction e; exact c
|
||||
omit c e
|
||||
|
||||
omit c d
|
||||
|
||||
definition eq_of_cube (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
definition eq_of_cube (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
transpose s₁₀₁⁻¹ᵛ ⬝h s₁₁₀ ⬝h transpose s₁₂₁ =
|
||||
whisker_square (eq_bot_of_square s₀₁₁) (eq_bot_of_square s₂₁₁) idp idp s₁₁₂ :=
|
||||
by induction c; reflexivity
|
||||
|
||||
definition eq_of_vdeg_cube {s s' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
||||
(c : cube s s' vrfl vrfl vrfl vrfl) : s = s' :=
|
||||
begin
|
||||
induction s, exact eq_of_cube c
|
||||
end
|
||||
(c : cube vrfl vrfl vrfl vrfl s s') : s = s' :=
|
||||
by induction s; exact eq_of_cube c
|
||||
|
||||
definition square_pathover [unfold 7]
|
||||
{f₁ : A → b₁ = b₂} {f₂ : A → b₃ = b₄} {f₃ : A → b₁ = b₃} {f₄ : A → b₂ = b₄}
|
||||
{p : a = a'}
|
||||
{q : square (f₁ a) (f₂ a) (f₃ a) (f₄ a)}
|
||||
{r : square (f₁ a') (f₂ a') (f₃ a') (f₄ a')}
|
||||
(s : cube q r (vdeg_square (ap f₁ p)) (vdeg_square (ap f₂ p))
|
||||
(vdeg_square (ap f₃ p)) (vdeg_square (ap f₄ p))) : q =[p] r :=
|
||||
(s : cube (vdeg_square (ap f₁ p)) (vdeg_square (ap f₂ p))
|
||||
(vdeg_square (ap f₃ p)) (vdeg_square (ap f₄ p)) q r) : q =[p] r :=
|
||||
by induction p;apply pathover_idp_of_eq;exact eq_of_vdeg_cube s
|
||||
|
||||
/- Transporting along a square -/
|
||||
|
||||
definition cube_transport110 {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
||||
(p : s₁₁₀ = s₁₁₀') (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
cube s₁₁₀' s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ :=
|
||||
(p : s₁₁₀ = s₁₁₀') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀' s₁₁₂ :=
|
||||
by induction p; exact c
|
||||
|
||||
definition cube_transport112 {s₁₁₂' : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
||||
(p : s₁₁₂ = s₁₁₂') (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
cube s₁₁₀ s₁₁₂' s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ :=
|
||||
(p : s₁₁₂ = s₁₁₂') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂':=
|
||||
by induction p; exact c
|
||||
|
||||
definition cube_transport011 {s₀₁₁' : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
|
||||
(p : s₀₁₁ = s₀₁₁') (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
cube s₁₁₀ s₁₁₂ s₀₁₁' s₂₁₁ s₁₀₁ s₁₂₁ :=
|
||||
(p : s₀₁₁ = s₀₁₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁' s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction p; exact c
|
||||
|
||||
definition cube_transport211 {s₂₁₁' : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
||||
(p : s₂₁₁ = s₂₁₁') (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁' s₁₀₁ s₁₂₁ :=
|
||||
(p : s₂₁₁ = s₂₁₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁' s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction p; exact c
|
||||
|
||||
definition cube_transport101 {s₁₀₁' : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
||||
(p : s₁₀₁ = s₁₀₁') (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁' s₁₂₁ :=
|
||||
(p : s₁₀₁ = s₁₀₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁ s₁₀₁' s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction p; exact c
|
||||
|
||||
definition cube_transport121 {s₁₂₁' : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
||||
(p : s₁₂₁ = s₁₂₁') (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||
cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁' :=
|
||||
(p : s₁₂₁ = s₁₂₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||||
cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁' s₁₁₀ s₁₁₂ :=
|
||||
by induction p; exact c
|
||||
|
||||
/- Each equality between squares leads to a cube which is degenerate in one
|
||||
dimension. -/
|
||||
|
||||
definition deg1_cube {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (p : s₁₁₀ = s₁₁₀') :
|
||||
cube s₁₁₀ s₁₁₀' vrfl vrfl vrfl vrfl :=
|
||||
cube s₁₁₀ s₁₁₀' hrfl hrfl vrfl vrfl :=
|
||||
by induction p; exact rfl1
|
||||
|
||||
definition deg2_cube {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (p : s₁₁₀ = s₁₁₀') :
|
||||
cube vrfl vrfl s₁₁₀ s₁₁₀' hrfl hrfl :=
|
||||
cube hrfl hrfl s₁₁₀ s₁₁₀' hrfl hrfl :=
|
||||
by induction p; exact rfl2
|
||||
|
||||
definition deg3_cube {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (p : s₁₁₀ = s₁₁₀') :
|
||||
cube hrfl hrfl hrfl hrfl s₁₁₀ s₁₁₀' :=
|
||||
cube vrfl vrfl vrfl vrfl s₁₁₀ s₁₁₀' :=
|
||||
by induction p; exact rfl3
|
||||
|
||||
/- For each square of parralel equations, there are cubes where the square's
|
||||
|
@ -157,16 +161,16 @@ namespace eq
|
|||
|
||||
include sq
|
||||
|
||||
definition ids1_cube_of_square : cube ids ids (hdeg_square s₀₁)
|
||||
(hdeg_square s₂₁) (hdeg_square s₁₀) (hdeg_square s₁₂) :=
|
||||
definition ids3_cube_of_square : cube (hdeg_square s₀₁)
|
||||
(hdeg_square s₂₁) (hdeg_square s₁₀) (hdeg_square s₁₂) ids ids :=
|
||||
by induction p₀₀; induction sq; apply idc
|
||||
|
||||
definition ids2_cube_of_square : cube (hdeg_square s₀₁) (hdeg_square s₂₁) ids ids
|
||||
(vdeg_square s₁₀) (vdeg_square s₁₂) :=
|
||||
definition ids2_cube_of_square : cube ids ids
|
||||
(vdeg_square s₁₀) (vdeg_square s₁₂) (hdeg_square s₀₁) (hdeg_square s₂₁) :=
|
||||
by induction p₀₀; induction sq; apply idc
|
||||
|
||||
definition ids3_cube_of_square : cube (vdeg_square s₀₁) (vdeg_square s₂₁)
|
||||
(vdeg_square s₁₀) (vdeg_square s₁₂) ids ids :=
|
||||
definition ids1_cube_of_square : cube (vdeg_square s₁₀) (vdeg_square s₁₂)
|
||||
ids ids (vdeg_square s₀₁) (vdeg_square s₂₁) :=
|
||||
by induction p₀₀; induction sq; apply idc
|
||||
|
||||
end
|
||||
|
@ -176,7 +180,7 @@ namespace eq
|
|||
section cube_fillers
|
||||
variables (s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁)
|
||||
|
||||
definition cube_fill110 : Σ lid, cube lid s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ :=
|
||||
definition cube_fill110 : Σ lid, cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ lid s₁₁₂ :=
|
||||
begin
|
||||
induction s₀₁₁, induction s₂₁₁,
|
||||
let fillsq := square_fill_l (eq_of_vdeg_square s₁₀₁)
|
||||
|
@ -188,7 +192,7 @@ namespace eq
|
|||
apply ids2_cube_of_square, exact fillsq.2
|
||||
end
|
||||
|
||||
definition cube_fill112 : Σ lid, cube s₁₁₀ lid s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ :=
|
||||
definition cube_fill112 : Σ lid, cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ lid :=
|
||||
begin
|
||||
induction s₀₁₁, induction s₂₁₁,
|
||||
let fillsq := square_fill_r (eq_of_vdeg_square s₁₀₁)
|
||||
|
@ -200,7 +204,7 @@ namespace eq
|
|||
apply ids2_cube_of_square, exact fillsq.2,
|
||||
end
|
||||
|
||||
definition cube_fill011 : Σ lid, cube s₁₁₀ s₁₁₂ lid s₂₁₁ s₁₀₁ s₁₂₁ :=
|
||||
definition cube_fill011 : Σ lid, cube lid s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
begin
|
||||
induction s₁₀₁, induction s₁₂₁,
|
||||
let fillsq := square_fill_t (eq_of_vdeg_square s₁₁₀) (eq_of_vdeg_square s₁₁₂)
|
||||
|
@ -209,10 +213,10 @@ namespace eq
|
|||
apply cube_transport110 (left_inv (vdeg_square_equiv _ _) s₁₁₀),
|
||||
apply cube_transport211 (left_inv (vdeg_square_equiv _ _) s₂₁₁),
|
||||
apply cube_transport112 (left_inv (vdeg_square_equiv _ _) s₁₁₂),
|
||||
apply ids3_cube_of_square, exact fillsq.2,
|
||||
apply ids1_cube_of_square, exact fillsq.2,
|
||||
end
|
||||
|
||||
definition cube_fill211 : Σ lid, cube s₁₁₀ s₁₁₂ s₀₁₁ lid s₁₀₁ s₁₂₁ :=
|
||||
definition cube_fill211 : Σ lid, cube s₀₁₁ lid s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
begin
|
||||
induction s₁₀₁, induction s₁₂₁,
|
||||
let fillsq := square_fill_b (eq_of_vdeg_square s₀₁₁) (eq_of_vdeg_square s₁₁₀)
|
||||
|
@ -221,10 +225,10 @@ namespace eq
|
|||
apply cube_transport011 (left_inv (vdeg_square_equiv _ _) s₀₁₁),
|
||||
apply cube_transport110 (left_inv (vdeg_square_equiv _ _) s₁₁₀),
|
||||
apply cube_transport112 (left_inv (vdeg_square_equiv _ _) s₁₁₂),
|
||||
apply ids3_cube_of_square, exact fillsq.2,
|
||||
apply ids1_cube_of_square, exact fillsq.2,
|
||||
end
|
||||
|
||||
definition cube_fill101 : Σ lid, cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ lid s₁₂₁ :=
|
||||
definition cube_fill101 : Σ lid, cube s₀₁₁ s₂₁₁ lid s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
begin
|
||||
induction s₁₁₀, induction s₁₁₂,
|
||||
let fillsq := square_fill_t (eq_of_hdeg_square s₀₁₁) (eq_of_hdeg_square s₂₁₁)
|
||||
|
@ -233,10 +237,10 @@ namespace eq
|
|||
apply cube_transport011 (left_inv (hdeg_square_equiv _ _) s₀₁₁),
|
||||
apply cube_transport211 (left_inv (hdeg_square_equiv _ _) s₂₁₁),
|
||||
apply cube_transport121 (left_inv (hdeg_square_equiv _ _) s₁₂₁),
|
||||
apply ids1_cube_of_square, exact fillsq.2,
|
||||
apply ids3_cube_of_square, exact fillsq.2,
|
||||
end
|
||||
|
||||
definition cube_fill121 : Σ lid, cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ lid :=
|
||||
definition cube_fill121 : Σ lid, cube s₀₁₁ s₂₁₁ s₁₀₁ lid s₁₁₀ s₁₁₂ :=
|
||||
begin
|
||||
induction s₁₁₀, induction s₁₁₂,
|
||||
let fillsq := square_fill_b (eq_of_hdeg_square s₁₀₁) (eq_of_hdeg_square s₀₁₁)
|
||||
|
@ -245,7 +249,7 @@ namespace eq
|
|||
apply cube_transport101 (left_inv (hdeg_square_equiv _ _) s₁₀₁),
|
||||
apply cube_transport011 (left_inv (hdeg_square_equiv _ _) s₀₁₁),
|
||||
apply cube_transport211 (left_inv (hdeg_square_equiv _ _) s₂₁₁),
|
||||
apply ids1_cube_of_square, exact fillsq.2,
|
||||
apply ids3_cube_of_square, exact fillsq.2,
|
||||
end
|
||||
|
||||
end cube_fillers
|
||||
|
|
Loading…
Reference in a new issue