feat(frontends/lean/parser): restore config options in the end of sections/namespaces

This commit is contained in:
Leonardo de Moura 2015-12-09 11:24:37 -08:00
parent f9a669665a
commit 3f9549485f
6 changed files with 7 additions and 6 deletions

View file

@ -231,7 +231,7 @@ class parser {
friend environment namespace_cmd(parser & p); friend environment namespace_cmd(parser & p);
friend environment end_scoped_cmd(parser & p); friend environment end_scoped_cmd(parser & p);
void push_local_scope(bool save_options = false); void push_local_scope(bool save_options = true);
void pop_local_scope(); void pop_local_scope();
void save_snapshot(); void save_snapshot();

View file

@ -3,7 +3,7 @@ _root_.A : Type₁ → Type₁
A : Type.{l} → Type.{l} A : Type.{l} → Type.{l}
_root_.A.{1} : Type₁ → Type₁ _root_.A.{1} : Type₁ → Type₁
P : B → B P : B → B
_root_.P.{1} : Π {n : }, _root_.P : Π {n : },
P : B → B P : B → B
_root_.P.{1} : ?B → ?B _root_.P.{1} : ?B → ?B
@P 2 : B → B @P 2 : B → B

View file

@ -1,2 +1,2 @@
@id Prop true : Prop @id Prop true : Prop
@id Prop true : Prop id true : Prop

View file

@ -26,6 +26,6 @@ inductive ftree (A : Type) (B : Type) : Type :=
leafa : A → ftree A B | leafa : A → ftree A B |
leafb : B → ftree A B | leafb : B → ftree A B |
node : (list A → ftree A B) → (B → ftree A B) → ftree A B node : (list A → ftree A B) → (B → ftree A B) → ftree A B
set_option pp.universes true
check ftree check ftree
end implicit2 end implicit2

View file

@ -27,5 +27,6 @@ by blast
example (a : nat) : a = 0 → (λ x, x + a) = (λ x, x + 0) := example (a : nat) : a = 0 → (λ x, x + a) = (λ x, x + 0) :=
by blast by blast
set_option trace.blast true
example (p q : nat → Prop) : (∃ x, p x ∧ q x) → (∃ x, q x) ∧ (∃ x, p x) := example (p q : nat → Prop) : (∃ x, p x ∧ q x) → (∃ x, q x) ∧ (∃ x, p x) :=
by blast by blast

View file

@ -1,4 +1,4 @@
id2 : (A → B → A) → A id2 : (A → B → A) → A
id2 : (A → B → A) → A id2 : (A → B → A) → A
id2.{l_2} : ?B a → (A → ?B a → A) → A id2 : ?B a → (A → ?B a → A) → A
id2.{l_1 l_2} : ?A → (Π {B : Type.{l_2}}, B → (?A → B → ?A) → ?A) id2 : ?A → (Π {B : Type}, B → (?A → B → ?A) → ?A)