feat(library/theories/combinatorics/choose): show the number of subsets of s of size k is choose (card s) k
This commit is contained in:
parent
471c9058eb
commit
3fc74c2ba8
1 changed files with 108 additions and 3 deletions
|
@ -5,7 +5,7 @@ Author: Jeremy Avigad
|
|||
|
||||
Binomial coefficients, "n choose k".
|
||||
-/
|
||||
import data.nat.div data.nat.fact
|
||||
import data.nat.div data.nat.fact data.finset
|
||||
open decidable
|
||||
|
||||
namespace nat
|
||||
|
@ -23,7 +23,8 @@ nat.cases_on n rfl (take m, rfl)
|
|||
|
||||
theorem choose_zero_succ (k : ℕ) : choose 0 (succ k) = 0 := rfl
|
||||
|
||||
theorem choose_succ_succ (n k : ℕ) : choose (succ n) (succ k) = choose n (succ k) + choose n k := rfl
|
||||
theorem choose_succ_succ (n k : ℕ) : choose (succ n) (succ k) = choose n (succ k) + choose n k :=
|
||||
rfl
|
||||
|
||||
theorem choose_eq_zero_of_lt {n : ℕ} : ∀{k : ℕ}, n < k → choose n k = 0 :=
|
||||
nat.induction_on n
|
||||
|
@ -74,7 +75,8 @@ begin
|
|||
end
|
||||
|
||||
-- A key identity. The proof is subtle.
|
||||
theorem succ_mul_choose_eq (n : ℕ) : ∀ k, succ n * (choose n k) = choose (succ n) (succ k) * succ k :=
|
||||
theorem succ_mul_choose_eq (n : ℕ) :
|
||||
∀ k, succ n * (choose n k) = choose (succ n) (succ k) * succ k :=
|
||||
begin
|
||||
induction n with [n, ih],
|
||||
{intro k,
|
||||
|
@ -115,4 +117,107 @@ eq.symm (div_eq_of_eq_mul_left (mul_pos !fact_pos !fact_pos)
|
|||
theorem fact_mul_fact_dvd_fact {n k : ℕ} (H : k ≤ n) : fact k * fact (n - k) ∣ fact n :=
|
||||
by rewrite [-choose_mul_fact_mul_fact H, mul.assoc]; apply dvd_mul_left
|
||||
|
||||
open finset
|
||||
|
||||
/- the number of subsets of s of size k is n choose k -/
|
||||
|
||||
section card_subsets
|
||||
variables {A : Type} [deceqA : decidable_eq A]
|
||||
include deceqA
|
||||
|
||||
private theorem aux₀ (s : finset A) : {t ∈ powerset s | card t = 0} = '{∅} :=
|
||||
ext (take t, iff.intro
|
||||
(assume H,
|
||||
assert t = ∅, from eq_empty_of_card_eq_zero (of_mem_filter H),
|
||||
show t ∈ '{ ∅ }, by rewrite [this, mem_singleton_eq'])
|
||||
(assume H,
|
||||
assert t = ∅, by rewrite mem_singleton_eq' at H; assumption,
|
||||
by substvars; exact mem_filter_of_mem !empty_mem_powerset rfl))
|
||||
|
||||
private theorem aux₁ (k : ℕ) : {t ∈ powerset (∅ : finset A) | card t = succ k} = ∅ :=
|
||||
eq_empty_of_forall_not_mem (take t, assume H,
|
||||
assert t ∈ powerset ∅, from mem_of_mem_filter H,
|
||||
assert t = ∅, by rewrite [powerset_empty at this, mem_singleton_eq' at this]; assumption,
|
||||
have card (∅ : finset A) = succ k, by rewrite -this; apply of_mem_filter H,
|
||||
nat.no_confusion this)
|
||||
|
||||
private theorem aux₂ {a : A} {s t : finset A} (anins : a ∉ s) (tpows : t ∈ powerset s) : a ∉ t :=
|
||||
suppose a ∈ t,
|
||||
have a ∈ s, from mem_of_subset_of_mem (subset_of_mem_powerset tpows) this,
|
||||
anins this
|
||||
|
||||
private theorem aux₃ {a : A} {s t : finset A} (anins : a ∉ s) (k : ℕ) :
|
||||
t ∈ (insert a) '[powerset s] ∧ card t = succ k ↔
|
||||
t ∈ (insert a) '[{t' ∈ powerset s | card t' = k}] :=
|
||||
iff.intro
|
||||
(assume H,
|
||||
obtain H' cardt, from H,
|
||||
obtain t' [(t'pows : t' ∈ powerset s) (teq : insert a t' = t)], from exists_of_mem_image H',
|
||||
assert aint : a ∈ t, by rewrite -teq; apply mem_insert,
|
||||
assert anint' : a ∉ t', from
|
||||
(assume aint',
|
||||
have a ∈ s, from mem_of_subset_of_mem (subset_of_mem_powerset t'pows) aint',
|
||||
anins this),
|
||||
assert t' = erase a t, by rewrite [-teq, erase_insert (aux₂ anins t'pows)],
|
||||
have card t' = k, by rewrite [this, card_erase_of_mem aint, cardt],
|
||||
mem_image (mem_filter_of_mem t'pows this) teq)
|
||||
(assume H,
|
||||
obtain t' [Ht' (teq : insert a t' = t)], from exists_of_mem_image H,
|
||||
assert t'pows : t' ∈ powerset s, from mem_of_mem_filter Ht',
|
||||
assert cardt' : card t' = k, from of_mem_filter Ht',
|
||||
and.intro
|
||||
(show t ∈ (insert a) '[powerset s], from mem_image t'pows teq)
|
||||
(show card t = succ k,
|
||||
by rewrite [-teq, card_insert_of_not_mem (aux₂ anins t'pows), cardt']))
|
||||
|
||||
private theorem aux₄ {a : A} {s : finset A} (anins : a ∉ s) (k : ℕ) :
|
||||
{t ∈ powerset (insert a s)| card t = succ k} =
|
||||
{t ∈ powerset s | card t = succ k} ∪ (insert a) '[{t ∈ powerset s | card t = k}] :=
|
||||
begin
|
||||
apply ext, intro t,
|
||||
rewrite [powerset_insert anins, mem_union_iff, *mem_filter_iff, mem_union_iff, and.right_distrib,
|
||||
aux₃ anins]
|
||||
end
|
||||
|
||||
private theorem aux₅ {a : A} {s : finset A} (anins : a ∉ s) (k : ℕ) :
|
||||
{t ∈ powerset s | card t = succ k} ∩ (insert a) '[{t ∈ powerset s | card t = k}] = ∅ :=
|
||||
inter_eq_empty
|
||||
(take t, assume Ht₁ Ht₂,
|
||||
have tpows : t ∈ powerset s, from mem_of_mem_filter Ht₁,
|
||||
have anint : a ∉ t, from aux₂ anins tpows,
|
||||
obtain t' [Ht' (teq : insert a t' = t)], from exists_of_mem_image Ht₂,
|
||||
have aint : a ∈ t, by rewrite -teq; apply mem_insert,
|
||||
show false, from anint aint)
|
||||
|
||||
private theorem aux₆ {a : A} {s : finset A} (anins : a ∉ s) (k : ℕ) :
|
||||
card ((insert a) '[{t ∈ powerset s | card t = k}]) = card {t ∈ powerset s | card t = k} :=
|
||||
have set.inj_on (insert a) (ts {t ∈ powerset s| card t = k}), from
|
||||
take t₁ t₂, assume Ht₁ Ht₂,
|
||||
assume Heq : insert a t₁ = insert a t₂,
|
||||
have t₁ ∈ powerset s, from mem_of_mem_filter Ht₁,
|
||||
assert anint₁ : a ∉ t₁, from aux₂ anins this,
|
||||
have t₂ ∈ powerset s, from mem_of_mem_filter Ht₂,
|
||||
assert anint₂ : a ∉ t₂, from aux₂ anins this,
|
||||
calc
|
||||
t₁ = erase a (insert a t₁) : by rewrite (erase_insert anint₁)
|
||||
... = erase a (insert a t₂) : Heq
|
||||
... = t₂ : by rewrite (erase_insert anint₂),
|
||||
card_image_eq_of_inj_on this
|
||||
|
||||
theorem card_subsets (s : finset A) : ∀k, card {t ∈ powerset s | card t = k} = choose (card s) k :=
|
||||
begin
|
||||
induction s with a s anins ih,
|
||||
{intro k,
|
||||
cases k with k,
|
||||
{rewrite aux₀},
|
||||
rewrite aux₁},
|
||||
intro k,
|
||||
cases k with k,
|
||||
{rewrite [aux₀, choose_zero_right]},
|
||||
rewrite [*(card_insert_of_not_mem anins), aux₄ anins, card_union_of_disjoint (aux₅ anins k),
|
||||
aux₆ anins k, *ih]
|
||||
end
|
||||
|
||||
end card_subsets
|
||||
|
||||
end nat
|
||||
|
|
Loading…
Reference in a new issue