feat(library/data/bv): Add preliminary bitvector ops.

This commit is contained in:
Joe Hendrix 2015-11-29 23:10:21 -08:00 committed by Leonardo de Moura
parent e4c839f362
commit 3fddca81b5

152
library/data/bv.lean Normal file
View file

@ -0,0 +1,152 @@
/-
Copyright (c) 2015 Joe Hendrix. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Joe Hendrix
Basic operations on bitvectors.
This is a work-in-progress, and contains additions to other theories.
-/
import data.list
import data.tuple
namespace bv
open algebra
open bool
open eq.ops
open list
open nat
open prod
open subtype
open tuple
definition bv [reducible] (n : ) := tuple bool n
-- Create a zero bitvector
definition bv_zero (n : ) : bv n := replicate ff
-- Create a bitvector with the constant one.
definition bv_one : Π (n : ), bv n
| 0 := replicate ff
| (succ n) := (replicate ff : bv n) ++ (tt :: nil)
definition bv_cong {a b : } : (a = b) → bv a → bv b
| c (tag x p) := tag x (c ▸ p)
section shift
-- shift left
definition bv_shl {n:} : bv n → → bv n
| x i :=
dite (i ≤ n)
(λle,
let r := dropn i x ++ replicate ff in
let eq := calc (n-i) + i = n : nat.sub_add_cancel le in
bv_cong eq r)
(λp, bv_zero n)
-- unsigned shift right
definition bv_ushr {n:} : bv n → → bv n
| x i :=
dite (i ≤ n)
(λle,
let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in
let eq := calc (i+(n-i)) = (n - i) + i : add.comm
... = n : nat.sub_add_cancel le in
bv_cong eq (replicate ff ++ y))
(λgt, bv_zero n)
-- signed shift right
definition bv_sshr {m:} : bv (succ m) → → bv (succ m)
| x i :=
let n := succ m in
dite (i ≤ n)
(λle,
let z : bv i := replicate (head x) in
let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in
let eq := calc (i+(n-i)) = (n-i) + i : add.comm
... = n : nat.sub_add_cancel le in
bv_cong eq (z ++ y))
(λgt, bv_zero n)
end shift
section bitwise
variable { n : }
-- | Bitwise and
definition bv_and : bv n → bv n → bv n := map₂ band
-- | Bitwise or
definition bv_or : bv n → bv n → bv n := map₂ bor
-- | Bitwise xor
definition bv_xor : bv n → bv n → bv n := map₂ bxor
end bitwise
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
protected definition carry (x:bool) (y:bool) (c:bool) :=
x && y || x && c || y && c
-- Add with carry (no overflow)
definition bv_adc {n:} : bv n → bv n → bool → bv (n+1)
| x y c :=
let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in
let z := tuple.mapAccumR₂ f x y c in
(pr₁ z) :: (pr₂ z)
definition bv_add {n:} : bv n → bv n → bv n
| x y := tail (bv_adc x y ff)
protected definition borrow (x:bool) (y:bool) (b:bool) :=
bnot x && y || bnot x && b || y && b
-- Subtract with borrow
definition bv_sbb {n:} : bv n → bv n → bool → bool × bv n
| x y b :=
let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in
tuple.mapAccumR₂ f x y b
definition bv_sub {n:} (x y: bv n) := pr₂ (bv_sbb x y ff)
definition bv_neg {n:} : bv n → bv n
| x :=
let f := λy c, (y || c, bxor y c) in
pr₂ (mapAccumR f x ff)
protected definition mulc {n:} : list bool → bv n → bv n → bv n
| [] y r := r
| (tt::x) y r := mulc x y (bv_add r (bv_shl y (length x)))
| (ff::x) y r := mulc x y r
definition bv_mul {n:} : bv n → bv n → bv n
| (tag x px) y := bv.mulc x y (bv_zero n)
definition bv_has_zero [instance] {n : } : has_zero (bv n) :=
has_zero.mk (bv_zero n)
definition bv_has_one [instance] {n : } : has_one (bv n) :=
has_one.mk (bv_one n)
definition bv_has_add [instance] {n : } : has_add (bv n) :=
has_add.mk bv_add
definition bv_has_sub [instance] {n : } : has_sub (bv n) :=
has_sub.mk bv_sub
definition bv_has_neg [instance] {n : } : has_neg (bv n) :=
has_neg.mk bv_neg
definition bv_has_mul [instance] {n : } : has_mul (bv n) :=
has_mul.mk bv_mul
section from_bv
variable {A : Type}
protected definition fold_list_bits [p : has_add A] [q : has_one A]
: list bool → A → A
| [] r := r
| (tt::l) r := fold_list_bits l (r+r+1)
| (ff::l) r := fold_list_bits l (r+r)
-- Convert a bitvector to another number.
definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {w:nat} (v:bv w) : A :=
bv.fold_list_bits (to_list v) 0
end from_bv
end bv