feat(library/data/bv): Add preliminary bitvector ops.
This commit is contained in:
parent
e4c839f362
commit
3fddca81b5
1 changed files with 152 additions and 0 deletions
152
library/data/bv.lean
Normal file
152
library/data/bv.lean
Normal file
|
@ -0,0 +1,152 @@
|
|||
/-
|
||||
Copyright (c) 2015 Joe Hendrix. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Joe Hendrix
|
||||
|
||||
Basic operations on bitvectors.
|
||||
|
||||
This is a work-in-progress, and contains additions to other theories.
|
||||
-/
|
||||
import data.list
|
||||
import data.tuple
|
||||
|
||||
namespace bv
|
||||
open algebra
|
||||
open bool
|
||||
open eq.ops
|
||||
open list
|
||||
open nat
|
||||
open prod
|
||||
open subtype
|
||||
open tuple
|
||||
|
||||
definition bv [reducible] (n : ℕ) := tuple bool n
|
||||
|
||||
-- Create a zero bitvector
|
||||
definition bv_zero (n : ℕ) : bv n := replicate ff
|
||||
|
||||
-- Create a bitvector with the constant one.
|
||||
definition bv_one : Π (n : ℕ), bv n
|
||||
| 0 := replicate ff
|
||||
| (succ n) := (replicate ff : bv n) ++ (tt :: nil)
|
||||
|
||||
definition bv_cong {a b : ℕ} : (a = b) → bv a → bv b
|
||||
| c (tag x p) := tag x (c ▸ p)
|
||||
|
||||
section shift
|
||||
|
||||
-- shift left
|
||||
definition bv_shl {n:ℕ} : bv n → ℕ → bv n
|
||||
| x i :=
|
||||
dite (i ≤ n)
|
||||
(λle,
|
||||
let r := dropn i x ++ replicate ff in
|
||||
let eq := calc (n-i) + i = n : nat.sub_add_cancel le in
|
||||
bv_cong eq r)
|
||||
(λp, bv_zero n)
|
||||
|
||||
-- unsigned shift right
|
||||
definition bv_ushr {n:ℕ} : bv n → ℕ → bv n
|
||||
| x i :=
|
||||
dite (i ≤ n)
|
||||
(λle,
|
||||
let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in
|
||||
let eq := calc (i+(n-i)) = (n - i) + i : add.comm
|
||||
... = n : nat.sub_add_cancel le in
|
||||
bv_cong eq (replicate ff ++ y))
|
||||
(λgt, bv_zero n)
|
||||
|
||||
-- signed shift right
|
||||
definition bv_sshr {m:ℕ} : bv (succ m) → ℕ → bv (succ m)
|
||||
| x i :=
|
||||
let n := succ m in
|
||||
dite (i ≤ n)
|
||||
(λle,
|
||||
let z : bv i := replicate (head x) in
|
||||
let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in
|
||||
let eq := calc (i+(n-i)) = (n-i) + i : add.comm
|
||||
... = n : nat.sub_add_cancel le in
|
||||
bv_cong eq (z ++ y))
|
||||
(λgt, bv_zero n)
|
||||
|
||||
end shift
|
||||
|
||||
section bitwise
|
||||
variable { n : ℕ }
|
||||
|
||||
-- | Bitwise and
|
||||
definition bv_and : bv n → bv n → bv n := map₂ band
|
||||
|
||||
-- | Bitwise or
|
||||
definition bv_or : bv n → bv n → bv n := map₂ bor
|
||||
|
||||
-- | Bitwise xor
|
||||
definition bv_xor : bv n → bv n → bv n := map₂ bxor
|
||||
|
||||
end bitwise
|
||||
|
||||
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
|
||||
protected definition carry (x:bool) (y:bool) (c:bool) :=
|
||||
x && y || x && c || y && c
|
||||
|
||||
-- Add with carry (no overflow)
|
||||
definition bv_adc {n:ℕ} : bv n → bv n → bool → bv (n+1)
|
||||
| x y c :=
|
||||
let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in
|
||||
let z := tuple.mapAccumR₂ f x y c in
|
||||
(pr₁ z) :: (pr₂ z)
|
||||
|
||||
definition bv_add {n:ℕ} : bv n → bv n → bv n
|
||||
| x y := tail (bv_adc x y ff)
|
||||
|
||||
protected definition borrow (x:bool) (y:bool) (b:bool) :=
|
||||
bnot x && y || bnot x && b || y && b
|
||||
|
||||
-- Subtract with borrow
|
||||
definition bv_sbb {n:ℕ} : bv n → bv n → bool → bool × bv n
|
||||
| x y b :=
|
||||
let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in
|
||||
tuple.mapAccumR₂ f x y b
|
||||
|
||||
definition bv_sub {n:ℕ} (x y: bv n) := pr₂ (bv_sbb x y ff)
|
||||
|
||||
definition bv_neg {n:ℕ} : bv n → bv n
|
||||
| x :=
|
||||
let f := λy c, (y || c, bxor y c) in
|
||||
pr₂ (mapAccumR f x ff)
|
||||
|
||||
protected definition mulc {n:ℕ} : list bool → bv n → bv n → bv n
|
||||
| [] y r := r
|
||||
| (tt::x) y r := mulc x y (bv_add r (bv_shl y (length x)))
|
||||
| (ff::x) y r := mulc x y r
|
||||
|
||||
definition bv_mul {n:ℕ} : bv n → bv n → bv n
|
||||
| (tag x px) y := bv.mulc x y (bv_zero n)
|
||||
|
||||
definition bv_has_zero [instance] {n : ℕ} : has_zero (bv n) :=
|
||||
has_zero.mk (bv_zero n)
|
||||
definition bv_has_one [instance] {n : ℕ} : has_one (bv n) :=
|
||||
has_one.mk (bv_one n)
|
||||
definition bv_has_add [instance] {n : ℕ} : has_add (bv n) :=
|
||||
has_add.mk bv_add
|
||||
definition bv_has_sub [instance] {n : ℕ} : has_sub (bv n) :=
|
||||
has_sub.mk bv_sub
|
||||
definition bv_has_neg [instance] {n : ℕ} : has_neg (bv n) :=
|
||||
has_neg.mk bv_neg
|
||||
definition bv_has_mul [instance] {n : ℕ} : has_mul (bv n) :=
|
||||
has_mul.mk bv_mul
|
||||
|
||||
section from_bv
|
||||
variable {A : Type}
|
||||
|
||||
protected definition fold_list_bits [p : has_add A] [q : has_one A]
|
||||
: list bool → A → A
|
||||
| [] r := r
|
||||
| (tt::l) r := fold_list_bits l (r+r+1)
|
||||
| (ff::l) r := fold_list_bits l (r+r)
|
||||
|
||||
-- Convert a bitvector to another number.
|
||||
definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {w:nat} (v:bv w) : A :=
|
||||
bv.fold_list_bits (to_list v) 0
|
||||
end from_bv
|
||||
end bv
|
Loading…
Reference in a new issue