feat(hit): start using induction tactic
This commit is contained in:
parent
50290fb81c
commit
40d5f83851
5 changed files with 19 additions and 44 deletions
|
@ -25,13 +25,13 @@ namespace circle
|
|||
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||||
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) (x : circle) : P x :=
|
||||
begin
|
||||
fapply (suspension.rec_on x),
|
||||
induction x with b,
|
||||
{ exact Pb1},
|
||||
{ exact Pb2},
|
||||
{ esimp, intro b, fapply (suspension.rec_on b),
|
||||
{ esimp at *, induction b with y,
|
||||
{ exact Ps1},
|
||||
{ exact Ps2},
|
||||
{ intro x, cases x}},
|
||||
{ cases y}},
|
||||
end
|
||||
|
||||
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
|
||||
|
@ -198,7 +198,7 @@ namespace circle
|
|||
|
||||
protected definition decode {x : circle} : circle.code x → base = x :=
|
||||
begin
|
||||
refine circle.rec_on x _ _,
|
||||
induction x,
|
||||
{ exact power loop},
|
||||
{ apply eq_of_homotopy, intro a,
|
||||
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
|
||||
|
@ -208,7 +208,7 @@ namespace circle
|
|||
--remove this theorem after #484
|
||||
theorem encode_decode {x : circle} : Π(a : circle.code x), circle.encode (circle.decode a) = a :=
|
||||
begin
|
||||
unfold circle.decode, refine circle.rec_on x _ _,
|
||||
unfold circle.decode, induction x,
|
||||
{ intro a, esimp [base,base1], --simplify after #587
|
||||
apply rec_nat_on a,
|
||||
{ exact idp},
|
||||
|
|
|
@ -33,9 +33,9 @@ parameters {A B : Type.{u}} (f g : A → B)
|
|||
protected definition rec {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x))
|
||||
(Pcp : Π(x : A), cp x ▸ P_i (f x) = P_i (g x)) (y : coeq) : P y :=
|
||||
begin
|
||||
fapply (type_quotient.rec_on y),
|
||||
{ intro a, apply P_i},
|
||||
{ intro a a' H, cases H, apply Pcp}
|
||||
induction y,
|
||||
{ apply P_i},
|
||||
{ cases H, apply Pcp}
|
||||
end
|
||||
|
||||
protected definition rec_on [reducible] {P : coeq → Type} (y : coeq)
|
||||
|
|
|
@ -37,11 +37,11 @@ parameters {A B : Type.{u}} (f : A → B)
|
|||
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
|
||||
(Pseg : Π(a : A), seg a ▸ Pbase (f a) = Ptop a) (x : cylinder) : P x :=
|
||||
begin
|
||||
fapply (type_quotient.rec_on x),
|
||||
{ intro a, cases a,
|
||||
induction x,
|
||||
{ cases a,
|
||||
apply Pbase,
|
||||
apply Ptop},
|
||||
{ intro a a' H, cases H, apply Pseg}
|
||||
{ cases H, apply Pseg}
|
||||
end
|
||||
|
||||
protected definition rec_on [reducible] {P : cylinder → Type} (x : cylinder)
|
||||
|
|
|
@ -36,11 +36,11 @@ parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|||
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▸ Pinl (f x) = Pinr (g x))
|
||||
(y : pushout) : P y :=
|
||||
begin
|
||||
fapply (type_quotient.rec_on y),
|
||||
{ intro a, cases a,
|
||||
induction y,
|
||||
{ cases a,
|
||||
apply Pinl,
|
||||
apply Pinr},
|
||||
{ intro a a' H, cases H, apply Pglue}
|
||||
{ cases H, apply Pglue}
|
||||
end
|
||||
|
||||
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
|
||||
|
@ -83,31 +83,6 @@ parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|||
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
namespace test
|
||||
open pushout equiv is_equiv unit bool
|
||||
private definition unit_of_empty (u : empty) : unit := star
|
||||
|
||||
example : pushout unit_of_empty unit_of_empty ≃ bool :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro x, fapply (pushout.rec_on _ _ x),
|
||||
intro u, exact ff,
|
||||
intro u, exact tt,
|
||||
intro c, cases c},
|
||||
{ intro b, cases b,
|
||||
exact (inl _ _ ⋆),
|
||||
exact (inr _ _ ⋆)},
|
||||
{ intro b, cases b, esimp, esimp},
|
||||
{ intro x, fapply (pushout.rec_on _ _ x),
|
||||
intro u, cases u, esimp,
|
||||
intro u, cases u, esimp,
|
||||
intro c, cases c},
|
||||
end
|
||||
|
||||
end test
|
||||
end pushout
|
||||
|
||||
attribute pushout.inl pushout.inr [constructor]
|
||||
|
|
|
@ -72,5 +72,5 @@ end
|
|||
end quotient
|
||||
|
||||
attribute quotient.class_of [constructor]
|
||||
attribute quotient.elim quotient.rec [unfold-c 7] [recursor]
|
||||
attribute quotient.elim quotient.rec [unfold-c 7] [recursor 7]
|
||||
attribute quotient.rec_on quotient.elim_on [unfold-c 4]
|
||||
|
|
Loading…
Reference in a new issue