fix(library/data/finset,library/data/list): fixes #799
Make sure standard library - theories folder can be compiled with --to_axiom
This commit is contained in:
parent
c83d592c17
commit
40ef589d8c
2 changed files with 6 additions and 6 deletions
|
@ -280,7 +280,7 @@ nat.strong_induction_on s
|
||||||
|
|
||||||
open equiv
|
open equiv
|
||||||
|
|
||||||
lemma finset_nat_equiv_nat : finset nat ≃ nat :=
|
definition finset_nat_equiv_nat : finset nat ≃ nat :=
|
||||||
mk to_nat of_nat of_nat_to_nat to_nat_of_nat
|
mk to_nat of_nat of_nat_to_nat to_nat_of_nat
|
||||||
|
|
||||||
end finset
|
end finset
|
||||||
|
|
|
@ -467,11 +467,11 @@ end dmap
|
||||||
|
|
||||||
section
|
section
|
||||||
open equiv
|
open equiv
|
||||||
lemma list_equiv_of_equiv {A B : Type} : A ≃ B → list A ≃ list B
|
definition list_equiv_of_equiv {A B : Type} : A ≃ B → list A ≃ list B
|
||||||
| (mk f g l r) :=
|
| (mk f g l r) :=
|
||||||
mk (map f) (map g)
|
mk (map f) (map g)
|
||||||
begin intros, rewrite [map_map, id_of_left_inverse l, map_id] end
|
begin intros, rewrite [map_map, id_of_left_inverse l, map_id], try reflexivity end
|
||||||
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id] end
|
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], try reflexivity end
|
||||||
|
|
||||||
private definition to_nat : list nat → nat
|
private definition to_nat : list nat → nat
|
||||||
| [] := 0
|
| [] := 0
|
||||||
|
@ -507,10 +507,10 @@ private lemma of_nat_to_nat : ∀ (l : list nat), of_nat (to_nat l) = l
|
||||||
| [] := rfl
|
| [] := rfl
|
||||||
| (x::xs) := begin unfold to_nat, rewrite of_nat_succ, rewrite *unpair_mkpair, esimp, congruence, apply of_nat_to_nat end
|
| (x::xs) := begin unfold to_nat, rewrite of_nat_succ, rewrite *unpair_mkpair, esimp, congruence, apply of_nat_to_nat end
|
||||||
|
|
||||||
lemma list_nat_equiv_nat : list nat ≃ nat :=
|
definition list_nat_equiv_nat : list nat ≃ nat :=
|
||||||
mk to_nat of_nat of_nat_to_nat to_nat_of_nat
|
mk to_nat of_nat of_nat_to_nat to_nat_of_nat
|
||||||
|
|
||||||
lemma list_equiv_self_of_equiv_nat {A : Type} : A ≃ nat → list A ≃ A :=
|
definition list_equiv_self_of_equiv_nat {A : Type} : A ≃ nat → list A ≃ A :=
|
||||||
suppose A ≃ nat, calc
|
suppose A ≃ nat, calc
|
||||||
list A ≃ list nat : list_equiv_of_equiv this
|
list A ≃ list nat : list_equiv_of_equiv this
|
||||||
... ≃ nat : list_nat_equiv_nat
|
... ≃ nat : list_nat_equiv_nat
|
||||||
|
|
Loading…
Reference in a new issue