feat(library/tactic): add 'congruence' tactic

It is the f_equal described at issue #500.
This commit is contained in:
Leonardo de Moura 2015-05-02 12:58:46 -07:00
parent 458d13025f
commit 415ca2b93f
12 changed files with 229 additions and 3 deletions

View file

@ -44,6 +44,7 @@ opaque definition info : tactic := builtin
opaque definition whnf : tactic := builtin opaque definition whnf : tactic := builtin
opaque definition contradiction : tactic := builtin opaque definition contradiction : tactic := builtin
opaque definition exfalso : tactic := builtin opaque definition exfalso : tactic := builtin
opaque definition congruence : tactic := builtin
opaque definition rotate_left (k : num) := builtin opaque definition rotate_left (k : num) := builtin
opaque definition rotate_right (k : num) := builtin opaque definition rotate_right (k : num) := builtin
definition rotate (k : num) := rotate_left k definition rotate (k : num) := rotate_left k

View file

@ -44,6 +44,7 @@ opaque definition info : tactic := builtin
opaque definition whnf : tactic := builtin opaque definition whnf : tactic := builtin
opaque definition contradiction : tactic := builtin opaque definition contradiction : tactic := builtin
opaque definition exfalso : tactic := builtin opaque definition exfalso : tactic := builtin
opaque definition congruence : tactic := builtin
opaque definition rotate_left (k : num) := builtin opaque definition rotate_left (k : num) := builtin
opaque definition rotate_right (k : num) := builtin opaque definition rotate_right (k : num) := builtin
definition rotate (k : num) := rotate_left k definition rotate (k : num) := rotate_left k

View file

@ -136,7 +136,7 @@
"generalize" "generalizes" "clear" "clears" "revert" "reverts" "back" "beta" "done" "exact" "rexact" "generalize" "generalizes" "clear" "clears" "revert" "reverts" "back" "beta" "done" "exact" "rexact"
"refine" "repeat" "whnf" "rotate" "rotate_left" "rotate_right" "inversion" "cases" "rewrite" "esimp" "refine" "repeat" "whnf" "rotate" "rotate_left" "rotate_right" "inversion" "cases" "rewrite" "esimp"
"unfold" "change" "check_expr" "contradiction" "exfalso" "split" "existsi" "constructor" "left" "right" "unfold" "change" "check_expr" "contradiction" "exfalso" "split" "existsi" "constructor" "left" "right"
"injection")) "injection" "congruence"))
word-end) word-end)
(1 'font-lock-constant-face)) (1 'font-lock-constant-face))
;; Types ;; Types

View file

@ -13,6 +13,7 @@ name const * g_bool_ff = nullptr;
name const * g_bool_tt = nullptr; name const * g_bool_tt = nullptr;
name const * g_char = nullptr; name const * g_char = nullptr;
name const * g_char_mk = nullptr; name const * g_char_mk = nullptr;
name const * g_congr = nullptr;
name const * g_dite = nullptr; name const * g_dite = nullptr;
name const * g_empty = nullptr; name const * g_empty = nullptr;
name const * g_empty_rec = nullptr; name const * g_empty_rec = nullptr;
@ -139,6 +140,7 @@ void initialize_constants() {
g_bool_tt = new name{"bool", "tt"}; g_bool_tt = new name{"bool", "tt"};
g_char = new name{"char"}; g_char = new name{"char"};
g_char_mk = new name{"char", "mk"}; g_char_mk = new name{"char", "mk"};
g_congr = new name{"congr"};
g_dite = new name{"dite"}; g_dite = new name{"dite"};
g_empty = new name{"empty"}; g_empty = new name{"empty"};
g_empty_rec = new name{"empty", "rec"}; g_empty_rec = new name{"empty", "rec"};
@ -266,6 +268,7 @@ void finalize_constants() {
delete g_bool_tt; delete g_bool_tt;
delete g_char; delete g_char;
delete g_char_mk; delete g_char_mk;
delete g_congr;
delete g_dite; delete g_dite;
delete g_empty; delete g_empty;
delete g_empty_rec; delete g_empty_rec;
@ -392,6 +395,7 @@ name const & get_bool_ff_name() { return *g_bool_ff; }
name const & get_bool_tt_name() { return *g_bool_tt; } name const & get_bool_tt_name() { return *g_bool_tt; }
name const & get_char_name() { return *g_char; } name const & get_char_name() { return *g_char; }
name const & get_char_mk_name() { return *g_char_mk; } name const & get_char_mk_name() { return *g_char_mk; }
name const & get_congr_name() { return *g_congr; }
name const & get_dite_name() { return *g_dite; } name const & get_dite_name() { return *g_dite; }
name const & get_empty_name() { return *g_empty; } name const & get_empty_name() { return *g_empty; }
name const & get_empty_rec_name() { return *g_empty_rec; } name const & get_empty_rec_name() { return *g_empty_rec; }

View file

@ -15,6 +15,7 @@ name const & get_bool_ff_name();
name const & get_bool_tt_name(); name const & get_bool_tt_name();
name const & get_char_name(); name const & get_char_name();
name const & get_char_mk_name(); name const & get_char_mk_name();
name const & get_congr_name();
name const & get_dite_name(); name const & get_dite_name();
name const & get_empty_name(); name const & get_empty_name();
name const & get_empty_rec_name(); name const & get_empty_rec_name();

View file

@ -8,6 +8,7 @@ bool.ff
bool.tt bool.tt
char char
char.mk char.mk
congr
dite dite
empty empty
empty.rec empty.rec

View file

@ -5,6 +5,7 @@ inversion_tactic.cpp whnf_tactic.cpp revert_tactic.cpp
assert_tactic.cpp clear_tactic.cpp expr_to_tactic.cpp location.cpp assert_tactic.cpp clear_tactic.cpp expr_to_tactic.cpp location.cpp
rewrite_tactic.cpp util.cpp class_instance_synth.cpp init_module.cpp rewrite_tactic.cpp util.cpp class_instance_synth.cpp init_module.cpp
change_tactic.cpp check_expr_tactic.cpp let_tactic.cpp contradiction_tactic.cpp change_tactic.cpp check_expr_tactic.cpp let_tactic.cpp contradiction_tactic.cpp
exfalso_tactic.cpp constructor_tactic.cpp injection_tactic.cpp) exfalso_tactic.cpp constructor_tactic.cpp injection_tactic.cpp
congruence_tactic.cpp)
target_link_libraries(tactic ${LEAN_LIBS}) target_link_libraries(tactic ${LEAN_LIBS})

View file

@ -0,0 +1,123 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "library/util.h"
#include "library/constants.h"
#include "library/reducible.h"
#include "library/tactic/util.h"
#include "library/tactic/intros_tactic.h"
#include "library/tactic/expr_to_tactic.h"
namespace lean {
tactic congruence_tactic() {
auto fn = [=](environment const & env, io_state const & ios, proof_state const & s) -> optional<proof_state> {
goals const & gs = s.get_goals();
if (empty(gs)) {
throw_no_goal_if_enabled(s);
return none_proof_state();
}
goal const & g = head(gs);
expr t = g.get_type();
substitution subst = s.get_subst();
name_generator ngen = s.get_ngen();
auto tc = mk_type_checker(env, ngen.mk_child(), s.relax_main_opaque());
constraint_seq cs;
t = tc->whnf(t, cs);
expr lhs, rhs;
if (!is_eq(t, lhs, rhs)) {
throw_tactic_exception_if_enabled(s, "invalid 'congruence' tactic, goal is not an equality");
return none_proof_state();
}
buffer<goal> new_goals;
auto mk_eq_goal = [&](expr const & lhs, expr const & rhs) {
expr new_type = mk_eq(*tc, lhs, rhs);
expr new_meta = g.mk_meta(ngen.next(), new_type);
new_goals.push_back(goal(new_meta, new_type));
return some_expr(new_meta);
};
std::function<optional<expr>(expr const &, expr const &, bool)> process =
[&](expr const & lhs, expr const & rhs, bool first) {
if (tc->is_def_eq(lhs, rhs, justification(), cs)) {
return some_expr(mk_refl(*tc, lhs));
}
if (!is_app(lhs) || !is_app(rhs)) {
if (first) {
throw_tactic_exception_if_enabled(s, "invalid 'congruence' tactic, left (and right) hand side of equation must be a function application");
return none_expr();
}
return mk_eq_goal(lhs, rhs);
}
expr lhs_fn = app_fn(lhs);
expr rhs_fn = app_fn(rhs);
expr lhs_fn_type = tc->whnf(tc->infer(lhs_fn, cs), cs);
expr rhs_fn_type = tc->whnf(tc->infer(rhs_fn, cs), cs);
if (!tc->is_def_eq(lhs_fn_type, rhs_fn_type, justification(), cs)) {
if (first) {
throw_tactic_exception_if_enabled(s, "invalid 'congruence' tactic, functions do not have the same type");
return none_expr();
}
return mk_eq_goal(lhs, rhs);
}
expr fn_type;
if (is_pi(lhs_fn_type)) {
fn_type = lhs_fn_type;
} else if (is_pi(rhs_fn_type)) {
fn_type = rhs_fn_type;
} else if (first) {
throw_tactic_exception_if_enabled(s, "invalid 'congruence' tactic, failed to compute function type");
return none_expr();
} else {
return mk_eq_goal(lhs, rhs);
}
if (!closed(binding_body(fn_type))) {
if (first) {
throw_tactic_exception_if_enabled(s, "invalid 'congruence' tactic, cannot be applied to dependent functions");
return none_expr();
}
return mk_eq_goal(lhs, rhs);
}
expr lhs_arg = app_arg(lhs);
expr rhs_arg = app_arg(rhs);
expr arg_pr;
if (tc->is_def_eq(lhs_arg, rhs_arg, justification(), cs)) {
arg_pr = mk_refl(*tc, lhs_arg);
} else {
arg_pr = *mk_eq_goal(lhs_arg, rhs_arg);
}
optional<expr> opt_fn_pr = process(lhs_fn, rhs_fn, false);
if (!opt_fn_pr)
return none_expr();
expr fn_pr = *opt_fn_pr;
expr A = binding_domain(fn_type);
expr B = binding_body(fn_type);
level l1 = sort_level(tc->ensure_type(A, cs));
level l2 = sort_level(tc->ensure_type(B, cs));
return some_expr(mk_app({mk_constant(get_congr_name(), {l1, l2}),
A, B, lhs_fn, rhs_fn, lhs_arg, rhs_arg, fn_pr, arg_pr}));
};
if (optional<expr> pr = process(lhs, rhs, true)) {
std::reverse(new_goals.begin(), new_goals.end());
assign(subst, g, *pr);
proof_state new_ps(s, to_list(new_goals.begin(), new_goals.end(), tail(gs)), subst, ngen);
if (solve_constraints(env, ios, new_ps, cs))
return some_proof_state(new_ps);
}
return none_proof_state();
};
return tactic01(fn);
}
void initialize_congruence_tactic() { register_simple_tac(name{"tactic", "congruence"}, congruence_tactic); }
void finalize_congruence_tactic() {}
}

View file

@ -0,0 +1,11 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
namespace lean {
void initialize_congruence_tactic();
void finalize_congruence_tactic();
}

View file

@ -27,6 +27,7 @@ Author: Leonardo de Moura
#include "library/tactic/exfalso_tactic.h" #include "library/tactic/exfalso_tactic.h"
#include "library/tactic/constructor_tactic.h" #include "library/tactic/constructor_tactic.h"
#include "library/tactic/injection_tactic.h" #include "library/tactic/injection_tactic.h"
#include "library/tactic/congruence_tactic.h"
namespace lean { namespace lean {
void initialize_tactic_module() { void initialize_tactic_module() {
@ -53,9 +54,11 @@ void initialize_tactic_module() {
initialize_exfalso_tactic(); initialize_exfalso_tactic();
initialize_constructor_tactic(); initialize_constructor_tactic();
initialize_injection_tactic(); initialize_injection_tactic();
initialize_congruence_tactic();
} }
void finalize_tactic_module() { void finalize_tactic_module() {
finalize_congruence_tactic();
finalize_injection_tactic(); finalize_injection_tactic();
finalize_constructor_tactic(); finalize_constructor_tactic();
finalize_exfalso_tactic(); finalize_exfalso_tactic();

View file

@ -0,0 +1,46 @@
example (f : nat → nat → nat) (a b c : nat) : b = c → f a b = f a c :=
begin
intro bc,
congruence,
assumption
end
example (f g : nat → nat → nat) (a b c : nat) : f = g → b = c → f a b = g a c :=
begin
intro fg bc,
congruence,
exact fg,
exact bc
end
example (f g : nat → nat → nat) (a b c : nat) : f = g → b = c → f a b = g a c :=
by intros; congruence; assumption
inductive list (A : Type) :=
| nil {} : list A
| cons : A → list A → list A
namespace list
notation `[` a `]` := list.cons a list.nil
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
notation h :: t := cons h t
variable {T : Type}
definition append : list T → list T → list T
| [] l := l
| (h :: s) t := h :: (append s t)
notation l₁ ++ l₂ := append l₁ l₂
end list
open list
example (a b : nat) : a = b → [a] ++ [b] = [b] ++ [a] :=
begin
intro ab,
congruence,
{congruence,
exact ab},
{congruence,
exact (eq.symm ab)}
end
example (a b : nat) : a = b → [a] ++ [b] = [b] ++ [a] :=
by intros; repeat (congruence | assumption | apply eq.symm)

View file

@ -0,0 +1,34 @@
import data.list
example (f : nat → nat → nat) (a b c : nat) : b = c → f a b = f a c :=
begin
intro bc,
congruence,
assumption
end
example (f g : nat → nat → nat) (a b c : nat) : f = g → b = c → f a b = g a c :=
begin
intro fg bc,
congruence,
exact fg,
exact bc
end
example (f g : nat → nat → nat) (a b c : nat) : f = g → b = c → f a b = g a c :=
by intros; congruence; assumption
open list
example (a b : nat) : a = b → [a] ++ [b] = [b] ++ [a] :=
begin
intro ab,
congruence,
{congruence,
exact ab},
{congruence,
exact (eq.symm ab)}
end
example (a b : nat) : a = b → [a] ++ [b] = [b] ++ [a] :=
by intros; repeat (congruence | assumption | apply eq.symm)