feat(library/data/nat/power): define power and add basic theorems
This commit is contained in:
parent
ff72a520ff
commit
4180b80df6
1 changed files with 62 additions and 0 deletions
62
library/data/nat/power.lean
Normal file
62
library/data/nat/power.lean
Normal file
|
@ -0,0 +1,62 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: data.nat.power
|
||||
Authors: Leonardo de Moura
|
||||
|
||||
Power
|
||||
-/
|
||||
import data.nat.basic data.nat.div
|
||||
|
||||
namespace nat
|
||||
|
||||
definition pow : nat → nat → nat
|
||||
| a 0 := 1
|
||||
| a (succ b) := a * pow a b
|
||||
|
||||
theorem pow_zero (a : nat) : pow a 0 = 1 :=
|
||||
rfl
|
||||
|
||||
theorem pow_succ (a b : nat) : pow a (succ b) = a * pow a b :=
|
||||
rfl
|
||||
|
||||
theorem one_pow : ∀ (a : nat), pow 1 a = 1
|
||||
| 0 := rfl
|
||||
| (succ a) := by rewrite [pow_succ, one_pow]
|
||||
|
||||
theorem pow_one : ∀ {a : nat}, a ≠ 0 → pow a 1 = a
|
||||
| 0 h := absurd rfl h
|
||||
| (succ a) h := by rewrite [pow_succ, pow_zero, mul_one]
|
||||
|
||||
theorem zero_pow : ∀ {a : nat}, a ≠ 0 → pow 0 a = 0
|
||||
| 0 h := absurd rfl h
|
||||
| (succ a) h := by rewrite [pow_succ, zero_mul]
|
||||
|
||||
theorem pow_add : ∀ (a b c : nat), pow a (b + c) = pow a b * pow a c
|
||||
| a b 0 := by rewrite [add_zero, pow_zero, mul_one]
|
||||
| a b (succ c) := by rewrite [add_succ, *pow_succ, pow_add a b c, mul.left_comm]
|
||||
|
||||
theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 :=
|
||||
show a * a = pow a (succ (succ zero)), from
|
||||
by rewrite [*pow_succ, *pow_zero, mul_one]
|
||||
|
||||
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c
|
||||
| a 0 0 h₁ h₂ := rfl
|
||||
| a (succ b) 0 h₁ h₂ :=
|
||||
assert aeq1 : a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂),
|
||||
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁,
|
||||
absurd h₁ !lt.irrefl
|
||||
| a 0 (succ c) h₁ h₂ :=
|
||||
assert aeq1 : a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)),
|
||||
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁,
|
||||
absurd h₁ !lt.irrefl
|
||||
| a (succ b) (succ c) h₁ h₂ :=
|
||||
assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial),
|
||||
assert beqc : pow a b = pow a c, by rewrite [*pow_succ at h₂]; exact (mul_cancel_left_of_ne_zero ane0 h₂),
|
||||
by rewrite [pow_cancel_left h₁ beqc]
|
||||
|
||||
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b
|
||||
| a 0 h := by rewrite [pow_succ, pow_zero, mul_one, div_self (pos_of_ne_zero h)]
|
||||
| a (succ b) h := by rewrite [pow_succ, mul_div_cancel_left _ (pos_of_ne_zero h)]
|
||||
end nat
|
Loading…
Reference in a new issue