refactor(hott/init): mark theorems load by initialization as transparent
This commit is contained in:
parent
beef85289a
commit
41c6914e48
3 changed files with 33 additions and 33 deletions
|
@ -13,26 +13,26 @@ prefix `¬` := not
|
|||
definition absurd {a : Type} {b : Type} (H₁ : a) (H₂ : ¬a) : b :=
|
||||
empty.rec (λ e, b) (H₂ H₁)
|
||||
|
||||
theorem mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a :=
|
||||
definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a :=
|
||||
assume Ha : a, absurd (H₁ Ha) H₂
|
||||
|
||||
-- not
|
||||
-- ---
|
||||
|
||||
theorem not_empty : ¬ empty :=
|
||||
definition not_empty : ¬ empty :=
|
||||
assume H : empty, H
|
||||
|
||||
theorem not_not_intro {a : Type} (Ha : a) : ¬¬a :=
|
||||
definition not_not_intro {a : Type} (Ha : a) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd Ha Hna
|
||||
|
||||
theorem not_intro {a : Type} (H : a → empty) : ¬a := H
|
||||
definition not_intro {a : Type} (H : a → empty) : ¬a := H
|
||||
|
||||
theorem not_elim {a : Type} (H₁ : ¬a) (H₂ : a) : empty := H₁ H₂
|
||||
definition not_elim {a : Type} (H₁ : ¬a) (H₂ : a) : empty := H₁ H₂
|
||||
|
||||
theorem not_implies_left {a b : Type} (H : ¬(a → b)) : ¬¬a :=
|
||||
definition not_implies_left {a b : Type} (H : ¬(a → b)) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
||||
|
||||
theorem not_implies_right {a b : Type} (H : ¬(a → b)) : ¬b :=
|
||||
definition not_implies_right {a b : Type} (H : ¬(a → b)) : ¬b :=
|
||||
assume Hb : b, absurd (assume Ha : a, Hb) H
|
||||
|
||||
-- eq
|
||||
|
@ -45,10 +45,10 @@ namespace eq
|
|||
variables {A : Type}
|
||||
variables {a b c a': A}
|
||||
|
||||
theorem subst {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b :=
|
||||
definition subst {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b :=
|
||||
rec H₂ H₁
|
||||
|
||||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||||
definition trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||||
subst H₂ H₁
|
||||
|
||||
definition symm (H : a = b) : b = a :=
|
||||
|
@ -85,16 +85,16 @@ namespace ne
|
|||
variable {A : Type}
|
||||
variables {a b : A}
|
||||
|
||||
theorem intro : (a = b → empty) → a ≠ b :=
|
||||
definition intro : (a = b → empty) → a ≠ b :=
|
||||
assume H, H
|
||||
|
||||
theorem elim : a ≠ b → a = b → empty :=
|
||||
definition elim : a ≠ b → a = b → empty :=
|
||||
assume H₁ H₂, H₁ H₂
|
||||
|
||||
theorem irrefl : a ≠ a → empty :=
|
||||
definition irrefl : a ≠ a → empty :=
|
||||
assume H, H rfl
|
||||
|
||||
theorem symm : a ≠ b → b ≠ a :=
|
||||
definition symm : a ≠ b → b ≠ a :=
|
||||
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
||||
end ne
|
||||
|
||||
|
@ -102,13 +102,13 @@ section
|
|||
open eq.ops
|
||||
variables {A : Type} {a b c : A}
|
||||
|
||||
theorem false.of_ne : a ≠ a → empty :=
|
||||
definition false.of_ne : a ≠ a → empty :=
|
||||
assume H, H rfl
|
||||
|
||||
theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c :=
|
||||
definition ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c :=
|
||||
assume H₁ H₂, H₁⁻¹ ▸ H₂
|
||||
|
||||
theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c :=
|
||||
definition ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c :=
|
||||
assume H₁ H₂, H₂ ▸ H₁
|
||||
end
|
||||
|
||||
|
@ -154,24 +154,24 @@ namespace iff
|
|||
definition rfl {a : Type} : a ↔ a :=
|
||||
refl a
|
||||
|
||||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||||
definition trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||||
intro
|
||||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||||
|
||||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||||
definition symm (H : a ↔ b) : b ↔ a :=
|
||||
intro
|
||||
(assume Hb, elim_right H Hb)
|
||||
(assume Ha, elim_left H Ha)
|
||||
|
||||
theorem true_elim (H : a ↔ unit) : a :=
|
||||
definition true_elim (H : a ↔ unit) : a :=
|
||||
mp (symm H) unit.star
|
||||
|
||||
theorem false_elim (H : a ↔ empty) : ¬a :=
|
||||
definition false_elim (H : a ↔ empty) : ¬a :=
|
||||
assume Ha : a, mp H Ha
|
||||
|
||||
open eq.ops
|
||||
theorem of_eq {a b : Type} (H : a = b) : a ↔ b :=
|
||||
definition of_eq {a b : Type} (H : a = b) : a ↔ b :=
|
||||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||||
end iff
|
||||
|
||||
|
@ -219,10 +219,10 @@ namespace decidable
|
|||
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||||
rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||||
|
||||
theorem em (p : Type) [H : decidable p] : sum p ¬p :=
|
||||
definition em (p : Type) [H : decidable p] : sum p ¬p :=
|
||||
by_cases (λ Hp, sum.inl Hp) (λ Hnp, sum.inr Hnp)
|
||||
|
||||
theorem by_contradiction [Hp : decidable p] (H : ¬p → empty) : p :=
|
||||
definition by_contradiction [Hp : decidable p] (H : ¬p → empty) : p :=
|
||||
by_cases
|
||||
(assume H₁ : p, H₁)
|
||||
(assume H₁ : ¬p, empty.rec (λ e, p) (H H₁))
|
||||
|
@ -306,7 +306,7 @@ if_pos unit.star
|
|||
definition if_empty {A : Type} (t e : A) : (if empty then t else e) = e :=
|
||||
if_neg not_empty
|
||||
|
||||
theorem if_cond_congr {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
|
||||
definition if_cond_congr {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
|
||||
: (if c₁ then t else e) = (if c₂ then t else e) :=
|
||||
decidable.rec_on H₁
|
||||
(λ Hc₁ : c₁, decidable.rec_on H₂
|
||||
|
@ -316,12 +316,12 @@ decidable.rec_on H₁
|
|||
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
||||
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
||||
|
||||
theorem if_congr_aux {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
|
||||
definition if_congr_aux {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
|
||||
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
||||
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
|
||||
|
||||
theorem if_congr {c₁ c₂ : Type} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
definition if_congr {c₁ c₂ : Type} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
|
||||
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
|
||||
if_congr_aux Hc Ht He
|
||||
|
@ -345,5 +345,5 @@ decidable.rec
|
|||
H
|
||||
|
||||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||||
theorem dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||||
definition dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||||
rfl
|
||||
|
|
|
@ -29,10 +29,10 @@ definition subrelation (Q R : B → B → Type) := ∀⦃x y⦄, Q x y → R x y
|
|||
definition inv_image (f : A → B) : A → A → Type :=
|
||||
λa₁ a₂, f a₁ ≺ f a₂
|
||||
|
||||
theorem inv_image.trans (f : A → B) (H : transitive R) : transitive (inv_image R f) :=
|
||||
definition inv_image.trans (f : A → B) (H : transitive R) : transitive (inv_image R f) :=
|
||||
λ (a₁ a₂ a₃ : A) (H₁ : inv_image R f a₁ a₂) (H₂ : inv_image R f a₂ a₃), H H₁ H₂
|
||||
|
||||
theorem inv_image.irreflexive (f : A → B) (H : irreflexive R) : irreflexive (inv_image R f) :=
|
||||
definition inv_image.irreflexive (f : A → B) (H : irreflexive R) : irreflexive (inv_image R f) :=
|
||||
λ (a : A) (H₁ : inv_image R f a a), H (f a) H₁
|
||||
|
||||
inductive tc {A : Type} (R : A → A → Type) : A → A → Type :=
|
||||
|
|
|
@ -29,10 +29,10 @@ namespace well_founded
|
|||
|
||||
hypothesis [Hwf : well_founded R]
|
||||
|
||||
theorem recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a :=
|
||||
definition recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a :=
|
||||
acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH)
|
||||
|
||||
theorem induction {C : A → Type} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a :=
|
||||
definition induction {C : A → Type} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a :=
|
||||
recursion a H
|
||||
|
||||
parameter {C : A → Type}
|
||||
|
@ -41,7 +41,7 @@ namespace well_founded
|
|||
definition fix_F (x : A) (a : acc R x) : C x :=
|
||||
acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH)
|
||||
|
||||
theorem fix_F_eq (x : A) (r : acc R x) :
|
||||
definition fix_F_eq (x : A) (r : acc R x) :
|
||||
fix_F x r = F x (λ (y : A) (p : y ≺ x), fix_F y (acc.inv r p)) :=
|
||||
acc.rec_on r (λ x H ih, rfl)
|
||||
|
||||
|
@ -75,7 +75,7 @@ namespace well_founded
|
|||
fix_F x (Hwf x)
|
||||
|
||||
-- Well-founded fixpoint satisfies fixpoint equation
|
||||
theorem fix_eq (x : A) : fix x = F x (λy h, fix y) :=
|
||||
definition fix_eq (x : A) : fix x = F x (λy h, fix y) :=
|
||||
calc
|
||||
fix x
|
||||
= fix_F x (Hwf x) : rfl
|
||||
|
|
Loading…
Reference in a new issue