feat(library/tactic/class_instance_synth): create class instance synthesis subproblems only for arguments marked with the [] binder annotation

This commit is contained in:
Leonardo de Moura 2015-02-24 16:10:16 -08:00
parent 3ede8e9150
commit 42289d4334
6 changed files with 20 additions and 14 deletions

View file

@ -236,9 +236,15 @@ struct class_instance_elaborator : public choice_iterator {
type = tc.whnf(type).first; type = tc.whnf(type).first;
if (!is_pi(type)) if (!is_pi(type))
break; break;
pair<expr, constraint> ac = mk_class_instance_elaborator(m_C, m_ctx, some_expr(binding_domain(type)), g, m_depth+1); expr arg;
expr arg = ac.first; if (binding_info(type).is_inst_implicit()) {
pair<expr, constraint> ac = mk_class_instance_elaborator(m_C, m_ctx, some_expr(binding_domain(type)),
g, m_depth+1);
arg = ac.first;
cs.push_back(ac.second); cs.push_back(ac.second);
} else {
arg = m_ctx.mk_meta(m_C->m_ngen, some_expr(binding_domain(type)), g);
}
r = mk_app(r, arg, g); r = mk_app(r, arg, g);
type = instantiate(binding_body(type), arg); type = instantiate(binding_body(type), arg);
} }

View file

@ -65,7 +65,7 @@ namespace semigroup
definition assoc {A : Type} (s : semigroup_struct A) : is_assoc (mul s) definition assoc {A : Type} (s : semigroup_struct A) : is_assoc (mul s)
:= semigroup_struct.rec (fun f h, h) s := semigroup_struct.rec (fun f h, h) s
definition is_mul_struct [instance] (A : Type) (s : semigroup_struct A) : mul_struct A definition is_mul_struct [instance] (A : Type) [s : semigroup_struct A] : mul_struct A
:= mul_struct.mk (mul s) := mul_struct.mk (mul s)
inductive semigroup : Type := inductive semigroup : Type :=
@ -74,7 +74,7 @@ namespace semigroup
definition carrier [coercion] (g : semigroup) definition carrier [coercion] (g : semigroup)
:= semigroup.rec (fun c s, c) g := semigroup.rec (fun c s, c) g
definition is_semigroup [instance] (g : semigroup) : semigroup_struct (carrier g) definition is_semigroup [instance] [g : semigroup] : semigroup_struct (carrier g)
:= semigroup.rec (fun c s, s) g := semigroup.rec (fun c s, s) g
end semigroup end semigroup
@ -91,7 +91,7 @@ namespace monoid
:= monoid_struct.rec (fun mul id a i, a) s := monoid_struct.rec (fun mul id a i, a) s
open semigroup open semigroup
definition is_semigroup_struct [instance] (A : Type) (s : monoid_struct A) : semigroup_struct A definition is_semigroup_struct [instance] (A : Type) [s : monoid_struct A] : semigroup_struct A
:= semigroup_struct.mk (mul s) (assoc s) := semigroup_struct.mk (mul s) (assoc s)
inductive monoid : Type := inductive monoid : Type :=

View file

@ -9,7 +9,7 @@ theorem inh_bool [instance] : inh Prop
set_option class.trace_instances true set_option class.trace_instances true
theorem inh_fun [instance] {A B : Type} (H : inh B) : inh (A → B) theorem inh_fun [instance] {A B : Type} [H : inh B] : inh (A → B)
:= inh.rec (λ b, inh.intro (λ a : A, b)) H := inh.rec (λ b, inh.intro (λ a : A, b)) H
theorem tst {A B : Type} (H : inh B) : inh (A → B → B) theorem tst {A B : Type} (H : inh B) : inh (A → B → B)

View file

@ -15,10 +15,10 @@ theorem inh_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : inh A
theorem inh_bool [instance] : inh Prop theorem inh_bool [instance] : inh Prop
:= inh.intro true := inh.intro true
theorem inh_fun [instance] {A B : Type} (H : inh B) : inh (A → B) theorem inh_fun [instance] {A B : Type} [H : inh B] : inh (A → B)
:= inh.rec (λb, inh.intro (λa : A, b)) H := inh.rec (λb, inh.intro (λa : A, b)) H
theorem pair_inh [instance] {A : Type} {B : Type} (H1 : inh A) (H2 : inh B) : inh (prod A B) theorem pair_inh [instance] {A : Type} {B : Type} [H1 : inh A] [H2 : inh B] : inh (prod A B)
:= inh_elim H1 (λa, inh_elim H2 (λb, inh.intro (pair a b))) := inh_elim H1 (λa, inh_elim H2 (λb, inh.intro (pair a b)))
definition assump := eassumption definition assump := eassumption

View file

@ -42,19 +42,19 @@ theorem congr_const_iff [instance] (T1 : Type) (R1 : T1 → T1 → Prop) (c : Pr
congruence R1 iff (const T1 c) := congr_const iff iff.refl T1 R1 c congruence R1 iff (const T1 c) := congr_const iff iff.refl T1 R1 c
theorem congr_or [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) theorem congr_or [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop)
(H1 : congruence R iff f1) (H2 : congruence R iff f2) : [H1 : congruence R iff f1] [H2 : congruence R iff f2] :
congruence R iff (λx, f1 x f2 x) := sorry congruence R iff (λx, f1 x f2 x) := sorry
theorem congr_implies [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) theorem congr_implies [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop)
(H1 : congruence R iff f1) (H2 : congruence R iff f2) : [H1 : congruence R iff f1] [H2 : congruence R iff f2] :
congruence R iff (λx, f1 x → f2 x) := sorry congruence R iff (λx, f1 x → f2 x) := sorry
theorem congr_iff [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) theorem congr_iff [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop)
(H1 : congruence R iff f1) (H2 : congruence R iff f2) : [H1 : congruence R iff f1] [H2 : congruence R iff f2] :
congruence R iff (λx, f1 x ↔ f2 x) := sorry congruence R iff (λx, f1 x ↔ f2 x) := sorry
theorem congr_not [instance] (T : Type) (R : T → T → Prop) (f : T → Prop) theorem congr_not [instance] (T : Type) (R : T → T → Prop) (f : T → Prop)
(H : congruence R iff f) : [H : congruence R iff f] :
congruence R iff (λx, ¬ f x) := sorry congruence R iff (λx, ¬ f x) := sorry
theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} [C : congruence R iff P] theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} [C : congruence R iff P]

View file

@ -20,7 +20,7 @@ theorem infer_eq {T : Type} (t1 t2 : T) [C : simplifies_to t1 t2] : t1 = t2 :=
simplifies_to.rec (λx, x) C simplifies_to.rec (λx, x) C
theorem simp_app [instance] (S : Type) (T : Type) (f1 f2 : S → T) (s1 s2 : S) theorem simp_app [instance] (S : Type) (T : Type) (f1 f2 : S → T) (s1 s2 : S)
(C1 : simplifies_to f1 f2) (C2 : simplifies_to s1 s2) : simplifies_to (f1 s1) (f2 s2) := [C1 : simplifies_to f1 f2] [C2 : simplifies_to s1 s2] : simplifies_to (f1 s1) (f2 s2) :=
mk (congr (get_eq C1) (get_eq C2)) mk (congr (get_eq C1) (get_eq C2))
theorem test1 (S : Type) (T : Type) (f1 f2 : S → T) (s1 s2 : S) (Hf : f1 = f2) (Hs : s1 = s2) : theorem test1 (S : Type) (T : Type) (f1 f2 : S → T) (s1 s2 : S) (Hf : f1 = f2) (Hs : s1 = s2) :