chore(hott/algebra) complete the sigma characterization
This commit is contained in:
parent
4af0a911b3
commit
428a2b6f58
1 changed files with 23 additions and 16 deletions
|
@ -47,6 +47,7 @@ namespace natural_transformation
|
||||||
apply (dcongr_arg2 (@natural_transformation.mk C D F G) p₁ p₂),
|
apply (dcongr_arg2 (@natural_transformation.mk C D F G) p₁ p₂),
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) :
|
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) :
|
||||||
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
||||||
begin
|
begin
|
||||||
|
@ -92,28 +93,34 @@ namespace natural_transformation
|
||||||
apply (@is_hset.elim), apply !homH,
|
apply (@is_hset.elim), apply !homH,
|
||||||
end
|
end
|
||||||
|
|
||||||
protected definition sigma_char :
|
--set_option pp.implicit true
|
||||||
|
protected definition sigma_char (F G : C ⇒ D) :
|
||||||
(Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) :=
|
(Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) :=
|
||||||
/-begin
|
begin
|
||||||
intro what,
|
|
||||||
fapply equiv.mk,
|
fapply equiv.mk,
|
||||||
intro S, apply natural_transformation.mk, exact (S.2),
|
intro S, apply natural_transformation.mk, exact (S.2),
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
intro H, apply (natural_transformation.rec_on H), intros (η, natu),
|
intro H,
|
||||||
exact (sigma.mk η @natu),
|
fapply sigma.mk,
|
||||||
intro H, apply (natural_transformation.rec_on _ _ _),
|
intro a, exact (H a),
|
||||||
intro S2,
|
intros (a, b, f), exact (naturality H f),
|
||||||
end-/
|
intro H, apply (natural_transformation.rec_on H),
|
||||||
/-(λ x, equiv.mk (λ S, natural_transformation.mk S.1 S.2)
|
intros (eta, nat), unfold function.id,
|
||||||
(adjointify (λ S, natural_transformation.mk S.1 S.2)
|
fapply natural_transformation.congr,
|
||||||
(λ H, natural_transformation.rec_on H (λ η nat, sigma.mk η nat))
|
apply idp,
|
||||||
(λ H, natural_transformation.rec_on H (λ η nat, refl (natural_transformation.mk η nat)))
|
repeat ( apply funext.path_pi ; intro a ),
|
||||||
(λ S, sigma.rec_on S (λ η nat, refl (sigma.mk η nat)))))-/
|
apply (@is_hset.elim), apply !homH,
|
||||||
sorry
|
intro S,
|
||||||
|
fapply sigma.path,
|
||||||
|
apply funext.path_pi, intro a,
|
||||||
|
apply idp,
|
||||||
|
repeat ( apply funext.path_pi ; intro a ),
|
||||||
|
apply (@is_hset.elim), apply !homH,
|
||||||
|
end
|
||||||
|
|
||||||
protected definition to_hset : is_hset (F ⟹ G) :=
|
protected definition to_hset : is_hset (F ⟹ G) :=
|
||||||
begin
|
begin
|
||||||
apply trunc_equiv, apply (equiv.to_is_equiv sigma_char),
|
apply trunc_equiv, apply (equiv.to_is_equiv !sigma_char),
|
||||||
apply trunc_sigma,
|
apply trunc_sigma,
|
||||||
apply trunc_pi, intro a, exact (@homH (objects D) _ (F a) (G a)),
|
apply trunc_pi, intro a, exact (@homH (objects D) _ (F a) (G a)),
|
||||||
intro η, apply trunc_pi, intro a,
|
intro η, apply trunc_pi, intro a,
|
||||||
|
|
Loading…
Reference in a new issue