diff --git a/library/data/nat/basic.lean b/library/data/nat/basic.lean index 9042b1406..13ba88c80 100644 --- a/library/data/nat/basic.lean +++ b/library/data/nat/basic.lean @@ -53,17 +53,17 @@ assume H, no_confusion H -- add_rewrite succ_ne_zero -theorem pred.zero : pred 0 = 0 := +theorem pred_zero : pred 0 = 0 := rfl -theorem pred.succ (n : ℕ) : pred (succ n) = n := +theorem pred_succ (n : ℕ) : pred (succ n) = n := rfl theorem eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) := induction_on n (or.inl rfl) (take m IH, or.inr - (show succ m = succ (pred (succ m)), from congr_arg succ !pred.succ⁻¹)) + (show succ m = succ (pred (succ m)), from congr_arg succ !pred_succ⁻¹)) theorem exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : ∃k : ℕ, n = succ k := exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H) diff --git a/library/data/nat/order.lean b/library/data/nat/order.lean index b5bfafe3e..ee755ea58 100644 --- a/library/data/nat/order.lean +++ b/library/data/nat/order.lean @@ -285,16 +285,16 @@ nat.cases_on n (assume H : pred 0 ≤ m, !zero_le) (take n', assume H : pred (succ n') ≤ m, - have H1 : n' ≤ m, from pred.succ n' ▸ H, + have H1 : n' ≤ m, from pred_succ n' ▸ H, succ_le_succ H1) theorem pred_le_of_le_succ {n m : ℕ} : n ≤ succ m → pred n ≤ m := nat.cases_on n - (assume H, !pred.zero⁻¹ ▸ zero_le m) + (assume H, !pred_zero⁻¹ ▸ zero_le m) (take n', assume H : succ n' ≤ succ m, have H1 : n' ≤ m, from le_of_succ_le_succ H, - !pred.succ⁻¹ ▸ H1) + !pred_succ⁻¹ ▸ H1) theorem succ_le_of_le_pred {n m : ℕ} : succ n ≤ m → n ≤ pred m := nat.cases_on m @@ -302,14 +302,14 @@ nat.cases_on m (take m', assume H : succ n ≤ succ m', have H1 : n ≤ m', from le_of_succ_le_succ H, - !pred.succ⁻¹ ▸ H1) + !pred_succ⁻¹ ▸ H1) theorem pred_le_pred_of_le {n m : ℕ} : n ≤ m → pred n ≤ pred m := nat.cases_on n - (assume H, pred.zero⁻¹ ▸ zero_le (pred m)) + (assume H, pred_zero⁻¹ ▸ zero_le (pred m)) (take n', assume H : succ n' ≤ m, - !pred.succ⁻¹ ▸ succ_le_of_le_pred H) + !pred_succ⁻¹ ▸ succ_le_of_le_pred H) theorem le_or_eq_succ_of_le_succ {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m := or_of_or_of_imp_left (succ_le_or_eq_of_le H) @@ -317,8 +317,8 @@ or_of_or_of_imp_left (succ_le_or_eq_of_le H) theorem le_pred_self (n : ℕ) : pred n ≤ n := cases_on n - (pred.zero⁻¹ ▸ !le.refl) - (take k : ℕ, (!pred.succ)⁻¹ ▸ !self_le_succ) + (pred_zero⁻¹ ▸ !le.refl) + (take k : ℕ, (!pred_succ)⁻¹ ▸ !self_le_succ) theorem succ_pos (n : ℕ) : 0 < succ n := !zero_lt_succ diff --git a/library/data/nat/sub.lean b/library/data/nat/sub.lean index c5e8334d2..2dc910e8f 100644 --- a/library/data/nat/sub.lean +++ b/library/data/nat/sub.lean @@ -33,7 +33,7 @@ induction_on n !sub_zero_right calc 0 - succ k = pred (0 - k) : !sub_succ_right ... = pred 0 : {IH} - ... = 0 : pred.zero) + ... = 0 : pred_zero) theorem sub_succ_succ (n m : ℕ) : succ n - succ m = n - m := succ_sub_succ_eq_sub n m @@ -118,14 +118,14 @@ theorem succ_sub_one (n : ℕ) : succ n - 1 = n := theorem mul_pred_left (n m : ℕ) : pred n * m = n * m - m := induction_on n (calc - pred 0 * m = 0 * m : {pred.zero} + pred 0 * m = 0 * m : {pred_zero} ... = 0 : !zero_mul ... = 0 - m : !sub_zero_left⁻¹ ... = 0 * m - m : {!zero_mul⁻¹}) (take k : nat, assume IH : pred k * m = k * m - m, calc - pred (succ k) * m = k * m : {!pred.succ} + pred (succ k) * m = k * m : {!pred_succ} ... = k * m + m - m : !sub_add_left⁻¹ ... = succ k * m - m : {!succ_mul⁻¹})