diff --git a/library/theories/analysis/metric_space.lean b/library/theories/analysis/metric_space.lean index beb8bc817..2b5e35d7f 100644 --- a/library/theories/analysis/metric_space.lean +++ b/library/theories/analysis/metric_space.lean @@ -38,8 +38,10 @@ eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H) open nat +/- convergence of a sequence -/ + definition converges_to_seq (X : ℕ → M) (y : M) : Prop := -∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y < ε +∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε -- the same, with ≤ in place of <; easier to prove, harder to use definition converges_to_seq.intro {X : ℕ → M} {y : M} @@ -81,17 +83,71 @@ eq_of_forall_dist_le ... = ε : add_halves, show dist y₁ y₂ ≤ ε, from le_of_lt this) -proposition eq_limit_of_converges_to_seq {X : ℕ → M} (y : M) (H : X ⟶ y in ℕ) : +proposition eq_limit_of_converges_to_seq {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : y = @limit_seq M _ X (exists.intro y H) := converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H)) proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in ℕ := take ε, assume egt0 : ε > 0, - exists.intro 0 - (take n, suppose n ≥ 0, - calc - dist y y = 0 : !dist_self - ... < ε : egt0) +exists.intro 0 + (take n, suppose n ≥ 0, + calc + dist y y = 0 : !dist_self + ... < ε : egt0) + +proposition converges_to_seq_offset {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : + (λ n, X (n + k)) ⟶ y in ℕ := +take ε, suppose ε > 0, +obtain N HN, from H `ε > 0`, +exists.intro N + (take n : ℕ, assume ngtN : n ≥ N, + show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right)) + +proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : + (λ n, X (k + n)) ⟶ y in ℕ := +have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite nat.add.comm), +by+ rewrite aux; exact converges_to_seq_offset k H + +proposition converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : + (λ n, X (succ n)) ⟶ y in ℕ := +converges_to_seq_offset 1 H + +proposition converges_to_seq_of_converges_to_seq_offset + {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) : + X ⟶ y in ℕ := +take ε, suppose ε > 0, +obtain N HN, from H `ε > 0`, +exists.intro (N + k) + (take n : ℕ, assume nge : n ≥ N + k, + have n - k ≥ N, from le_sub_of_add_le nge, + have dist (X (n - k + k)) y < ε, from HN (n - k) this, + show dist (X n) y < ε, using this, + by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this) + +proposition converges_to_seq_of_converges_to_seq_offset_left + {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) : + X ⟶ y in ℕ := +have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite nat.add.comm), +by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H + +proposition converges_to_seq_of_converges_to_seq_offset_succ + {X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) : + X ⟶ y in ℕ := +@converges_to_seq_of_converges_to_seq_offset M strucM X y 1 H + +proposition converges_to_seq_offset_iff (X : ℕ → M) (y : M) (k : ℕ) : + ((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := +iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset + +proposition converges_to_seq_offset_left_iff (X : ℕ → M) (y : M) (k : ℕ) : + ((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := +iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left + +proposition converges_to_seq_offset_succ_iff (X : ℕ → M) (y : M) : + ((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := +iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ + +/- cauchy sequences -/ definition cauchy (X : ℕ → M) : Prop := ∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε @@ -117,6 +173,8 @@ take ε, suppose ε > 0, end metric_space_M +/- convergence of a function at a point -/ + section metric_space_M_N variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N] include strucM strucN diff --git a/library/theories/analysis/real_limit.lean b/library/theories/analysis/real_limit.lean index cc0defd46..c11c7f6a5 100644 --- a/library/theories/analysis/real_limit.lean +++ b/library/theories/analysis/real_limit.lean @@ -1,7 +1,7 @@ /- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -Author: Jeremy Avigad +Authors: Jeremy Avigad, Robert Y. Lewis Instantiates the reals as a metric space, and expresses completeness, sup, and inf in a manner that is less constructive, but more convenient, than the way it is done in @@ -37,7 +37,6 @@ protected definition to_metric_space [instance] : metric_space ℝ := dist_triangle := abs_sub_le ⦄ -section nat open nat definition converges_to_seq (X : ℕ → ℝ) (y : ℝ) : Prop := @@ -69,6 +68,45 @@ converges_to_seq_unique H (@converges_to_limit_seq X (exists.intro y H)) proposition converges_to_seq_constant (y : ℝ) : (λn, y) ⟶ y in ℕ := metric_space.converges_to_seq_constant y +proposition converges_to_seq_offset {X : ℕ → ℝ} {y : ℝ} (k : ℕ) (H : X ⟶ y in ℕ) : + (λ n, X (n + k)) ⟶ y in ℕ := +metric_space.converges_to_seq_offset k H + +proposition converges_to_seq_offset_left {X : ℕ → ℝ} {y : ℝ} (k : ℕ) (H : X ⟶ y in ℕ) : + (λ n, X (k + n)) ⟶ y in ℕ := +metric_space.converges_to_seq_offset_left k H + +proposition converges_to_set_offset_succ {X : ℕ → ℝ} {y : ℝ} (H : X ⟶ y in ℕ) : + (λ n, X (succ n)) ⟶ y in ℕ := +metric_space.converges_to_seq_offset_succ H + +proposition converges_to_seq_of_converges_to_seq_offset + {X : ℕ → ℝ} {y : ℝ} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) : + X ⟶ y in ℕ := +metric_space.converges_to_seq_of_converges_to_seq_offset H + +proposition converges_to_seq_of_converges_to_seq_offset_left + {X : ℕ → ℝ} {y : ℝ} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) : + X ⟶ y in ℕ := +metric_space.converges_to_seq_of_converges_to_seq_offset_left H + +proposition converges_to_seq_of_converges_to_seq_offset_succ + {X : ℕ → ℝ} {y : ℝ} (H : (λ n, X (succ n)) ⟶ y in ℕ) : + X ⟶ y in ℕ := +metric_space.converges_to_seq_of_converges_to_seq_offset_succ H + +proposition converges_to_seq_offset_iff (X : ℕ → ℝ) (y : ℝ) (k : ℕ) : + ((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := +metric_space.converges_to_seq_offset_iff X y k + +proposition converges_to_seq_offset_left_iff (X : ℕ → ℝ) (y : ℝ) (k : ℕ) : + ((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := +metric_space.converges_to_seq_offset_left_iff X y k + +proposition converges_to_seq_offset_succ_iff (X : ℕ → ℝ) (y : ℝ) : + ((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := +metric_space.converges_to_seq_offset_succ_iff X y + /- the completeness of the reals, "translated" from data.real.complete -/ definition cauchy (X : ℕ → ℝ) := metric_space.cauchy X @@ -159,6 +197,14 @@ have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b), from and.intro HX (exists.intro b Hb), by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb +proposition exists_mem_and_lt_of_lt_sup {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : b < sup X) : +∃ x, x ∈ X ∧ b < x := +have ¬ ∀ x, x ∈ X → x ≤ b, from assume H, not_le_of_gt Hb (sup_le HX H), +obtain x (Hx : ¬ (x ∈ X → x ≤ b)), from exists_not_of_not_forall this, +exists.intro x + (have x ∈ X ∧ ¬ x ≤ b, by rewrite [-not_implies_iff_and_not]; apply Hx, + and.intro (and.left this) (lt_of_not_ge (and.right this))) + private definition exists_is_inf {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) : ∃ y, is_inf X y := let x := some (and.left H), b := some (and.right H) in @@ -186,9 +232,297 @@ have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x), from and.intro HX (exists.intro b Hb), by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb +proposition exists_mem_and_lt_of_inf_lt {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : inf X < b) : +∃ x, x ∈ X ∧ x < b := +have ¬ ∀ x, x ∈ X → b ≤ x, from assume H, not_le_of_gt Hb (le_inf HX H), +obtain x (Hx : ¬ (x ∈ X → b ≤ x)), from exists_not_of_not_forall this, +exists.intro x + (have x ∈ X ∧ ¬ b ≤ x, by rewrite [-not_implies_iff_and_not]; apply Hx, + and.intro (and.left this) (lt_of_not_ge (and.right this))) + +-- TODO: is there a better place to put this? +proposition image_neg_eq (X : set ℝ) : (λ x, -x) '[X] = {x | -x ∈ X} := +set.ext (take x, iff.intro + (assume H, obtain y [(Hy₁ : y ∈ X) (Hy₂ : -y = x)], from H, + show -x ∈ X, by rewrite [-Hy₂, neg_neg]; exact Hy₁) + (assume H : -x ∈ X, exists.intro (-x) (and.intro H !neg_neg))) + +proposition sup_neg {X : set ℝ} (nonempty_X : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) : + sup {x | -x ∈ X} = - inf X := +let negX := {x | -x ∈ X} in +have nonempty_negX : ∃ x, x ∈ negX, from + obtain x Hx, from nonempty_X, + have -(-x) ∈ X, + by rewrite neg_neg; apply Hx, + exists.intro (-x) this, +have H₁ : ∀ x, x ∈ negX → x ≤ - inf X, from + take x, + assume H, + have inf X ≤ -x, + from inf_le H Hb, + show x ≤ - inf X, + from le_neg_of_le_neg this, +have H₂ : ∀ x, x ∈ X → -sup negX ≤ x, from + take x, + assume H, + have -(-x) ∈ X, by rewrite neg_neg; apply H, + have -x ≤ sup negX, from le_sup this H₁, + show -sup negX ≤ x, + from !neg_le_of_neg_le this, +eq_of_le_of_ge + (show sup negX ≤ - inf X, + from sup_le nonempty_negX H₁) + (show -inf X ≤ sup negX, + from !neg_le_of_neg_le (le_inf nonempty_X H₂)) + +proposition inf_neg {X : set ℝ} (nonempty_X : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) : + inf {x | -x ∈ X} = - sup X := +let negX := {x | -x ∈ X} in +have nonempty_negX : ∃ x, x ∈ negX, from + obtain x Hx, from nonempty_X, + have -(-x) ∈ X, + by rewrite neg_neg; apply Hx, + exists.intro (-x) this, +have Hb' : ∀ x, x ∈ negX → -b ≤ x, + from take x, assume H, !neg_le_of_neg_le (Hb _ H), +have HX : X = {x | -x ∈ negX}, + from set.ext (take x, by rewrite [↑set_of, ↑mem, +neg_neg]), +show inf {x | -x ∈ X} = - sup X, + using HX Hb' nonempty_negX, by rewrite [HX at {2}, sup_neg nonempty_negX Hb', neg_neg] + end -end nat +/- limits under pointwise operations -/ + +section limit_operations +open nat + +variables {X Y : ℕ → ℝ} +variables {x y : ℝ} + +proposition add_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) : + (λ n, X n + Y n) ⟶ x + y in ℕ := +take ε, suppose ε > 0, +have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, +obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → abs (X n - x) < ε / 2), from HX e2pos, +obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → abs (Y n - y) < ε / 2), from HY e2pos, +let N := nat.max N₁ N₂ in +exists.intro N + (take n, + suppose n ≥ N, + have ngtN₁ : n ≥ N₁, from nat.le.trans !nat.le_max_left `n ≥ N`, + have ngtN₂ : n ≥ N₂, from nat.le.trans !nat.le_max_right `n ≥ N`, + show abs ((X n + Y n) - (x + y)) < ε, from calc + abs ((X n + Y n) - (x + y)) + = abs ((X n - x) + (Y n - y)) : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg, + *add.assoc, add.left_comm (-x)] + ... ≤ abs (X n - x) + abs (Y n - y) : abs_add_le_abs_add_abs + ... < ε / 2 + ε / 2 : add_lt_add (HN₁ ngtN₁) (HN₂ ngtN₂) + ... = ε : add_halves) + +private lemma mul_left_converges_to_seq_of_pos {c : ℝ} (cnz : c ≠ 0) (HX : X ⟶ x in ℕ) : + (λ n, c * X n) ⟶ c * x in ℕ := +take ε, suppose ε > 0, +have abscpos : abs c > 0, from abs_pos_of_ne_zero cnz, +have epos : ε / abs c > 0, from div_pos_of_pos_of_pos `ε > 0` abscpos, +obtain N (HN : ∀ {n}, n ≥ N → abs (X n - x) < ε / abs c), from HX epos, +exists.intro N + (take n, + suppose n ≥ N, + have H : abs (X n - x) < ε / abs c, from HN this, + show abs (c * X n - c * x) < ε, from calc + abs (c * X n - c * x) = abs c * abs (X n - x) : by rewrite [-mul_sub_left_distrib, abs_mul] + ... < abs c * (ε / abs c) : mul_lt_mul_of_pos_left H abscpos + ... = ε : mul_div_cancel' (ne_of_gt abscpos)) + +proposition mul_left_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) : + (λ n, c * X n) ⟶ c * x in ℕ := +by_cases + (assume cz : c = 0, + have (λ n, c * X n) = (λ n, 0), from funext (take x, by rewrite [cz, zero_mul]), + by+ rewrite [this, cz, zero_mul]; apply converges_to_seq_constant) + (suppose c ≠ 0, mul_left_converges_to_seq_of_pos this HX) + +proposition mul_right_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) : + (λ n, X n * c) ⟶ x * c in ℕ := +have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm), +by+ rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX + +-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc. + +proposition neg_converges_to_seq (HX : X ⟶ x in ℕ) : + (λ n, - X n) ⟶ - x in ℕ := +take ε, suppose ε > 0, +obtain N (HN : ∀ {n}, n ≥ N → abs (X n - x) < ε), from HX this, +exists.intro N + (take n, + suppose n ≥ N, + show abs (- X n - (- x)) < ε, + by rewrite [-neg_neg_sub_neg, *neg_neg, abs_neg]; exact HN `n ≥ N`) + +proposition neg_converges_to_seq_iff (X : ℕ → ℝ) : + ((λ n, - X n) ⟶ - x in ℕ) ↔ (X ⟶ x in ℕ) := +have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg), +iff.intro + (assume H : (λ n, -X n)⟶ -x in ℕ, + show X ⟶ x in ℕ, by+ rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H) + neg_converges_to_seq + +proposition abs_converges_to_seq_zero (HX : X ⟶ 0 in ℕ) : (λ n, abs (X n)) ⟶ 0 in ℕ := +take ε, suppose ε > 0, +obtain N (HN : ∀ n, n ≥ N → abs (X n - 0) < ε), from HX `ε > 0`, +exists.intro N + (take n, assume Hn : n ≥ N, + have abs (X n) < ε, from (!sub_zero ▸ HN n Hn), + show abs (abs (X n) - 0) < ε, using this, + by rewrite [sub_zero, abs_of_nonneg !abs_nonneg]; apply this) + +proposition converges_to_seq_zero_of_abs_converges_to_seq_zero (HX : (λ n, abs (X n)) ⟶ 0 in ℕ) : + X ⟶ 0 in ℕ := +take ε, suppose ε > 0, +obtain N (HN : ∀ n, n ≥ N → abs (abs (X n) - 0) < ε), from HX `ε > 0`, +exists.intro (N : ℕ) + (take n : ℕ, assume Hn : n ≥ N, + have HN' : abs (abs (X n) - 0) < ε, from HN n Hn, + have abs (X n) < ε, + by+ rewrite [real.sub_zero at HN', abs_of_nonneg !abs_nonneg at HN']; apply HN', + show abs (X n - 0) < ε, using this, + by rewrite sub_zero; apply this) + +proposition abs_converges_to_seq_zero_iff (X : ℕ → ℝ) : + ((λ n, abs (X n)) ⟶ 0 in ℕ) ↔ (X ⟶ 0 in ℕ) := +iff.intro converges_to_seq_zero_of_abs_converges_to_seq_zero abs_converges_to_seq_zero + +-- TODO: products of two sequences, converges_seq, limit_seq + +end limit_operations + +/- monotone sequences -/ + +section monotone_sequences +open nat set + +variable {X : ℕ → ℝ} + +definition nondecreasing (X : ℕ → ℝ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≤ X j + +proposition nondecreasing_of_forall_le_succ (H : ∀ i, X i ≤ X (succ i)) : nondecreasing X := +take i j, suppose i ≤ j, +have ∀ n, X i ≤ X (i + n), from + take n, nat.induction_on n + (by rewrite nat.add_zero; apply le.refl) + (take n, assume ih, le.trans ih (H (i + n))), +have X i ≤ X (i + (j - i)), from !this, +by+ rewrite [add_sub_of_le `i ≤ j` at this]; exact this + +proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : ℝ} + (Hb : ∀ i, X i ≤ b) : X ⟶ sup (X '[univ]) in ℕ := +let sX := sup (X '[univ]) in +have Xle : ∀ i, X i ≤ sX, from + take i, + have ∀ x, x ∈ X '[univ] → x ≤ b, from + (take x, assume H, + obtain i [H' (Hi : X i = x)], from H, + by rewrite -Hi; exact Hb i), + show X i ≤ sX, from le_sup (mem_image_of_mem X !mem_univ) this, +have exX : ∃ x, x ∈ X '[univ], + from exists.intro (X 0) (mem_image_of_mem X !mem_univ), +take ε, assume epos : ε > 0, +have sX - ε < sX, from !sub_lt_of_pos epos, +obtain x' [(H₁x' : x' ∈ X '[univ]) (H₂x' : sX - ε < x')], + from exists_mem_and_lt_of_lt_sup exX this, +obtain i [H' (Hi : X i = x')], from H₁x', +have Hi' : ∀ j, j ≥ i → sX - ε < X j, from + take j, assume Hj, lt_of_lt_of_le (Hi⁻¹ ▸ H₂x') (nondecX Hj), +exists.intro i + (take j, assume Hj : j ≥ i, + have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j), + have eq₁ : abs (X j - sX) = sX - X j, using this, by rewrite [abs_of_nonpos this, neg_sub], + have sX - ε < X j, from lt_of_lt_of_le (Hi⁻¹ ▸ H₂x') (nondecX Hj), + have sX < X j + ε, from lt_add_of_sub_lt_right this, + have sX - X j < ε, from sub_lt_left_of_lt_add this, + show (abs (X j - sX)) < ε, using eq₁ this, by rewrite eq₁; exact this) + +definition nonincreasing (X : ℕ → ℝ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≥ X j + +proposition nodecreasing_of_nonincreasing_neg (nonincX : nonincreasing (λ n, - X n)) : + nondecreasing (λ n, X n) := +take i j, suppose i ≤ j, +show X i ≤ X j, from le_of_neg_le_neg (nonincX this) + +proposition noincreasing_neg_of_nondecreasing (nondecX : nondecreasing X) : + nonincreasing (λ n, - X n) := +take i j, suppose i ≤ j, +show - X i ≥ - X j, from neg_le_neg (nondecX this) + +proposition nonincreasing_neg_iff (X : ℕ → ℝ) : nonincreasing (λ n, - X n) ↔ nondecreasing X := +iff.intro nodecreasing_of_nonincreasing_neg noincreasing_neg_of_nondecreasing + +proposition nonincreasing_of_nondecreasing_neg (nondecX : nondecreasing (λ n, - X n)) : + nonincreasing (λ n, X n) := +take i j, suppose i ≤ j, +show X i ≥ X j, from le_of_neg_le_neg (nondecX this) + +proposition nodecreasing_neg_of_nonincreasing (nonincX : nonincreasing X) : + nondecreasing (λ n, - X n) := +take i j, suppose i ≤ j, +show - X i ≤ - X j, from neg_le_neg (nonincX this) + +proposition nondecreasing_neg_iff (X : ℕ → ℝ) : nondecreasing (λ n, - X n) ↔ nonincreasing X := +iff.intro nonincreasing_of_nondecreasing_neg nodecreasing_neg_of_nonincreasing + +proposition nonincreasing_of_forall_succ_le (H : ∀ i, X (succ i) ≤ X i) : nonincreasing X := +begin + rewrite -nondecreasing_neg_iff, + show nondecreasing (λ n : ℕ, - X n), from + nondecreasing_of_forall_le_succ (take i, neg_le_neg (H i)) +end + +proposition converges_to_seq_inf_of_nonincreasing (nonincX : nonincreasing X) {b : ℝ} + (Hb : ∀ i, b ≤ X i) : X ⟶ inf (X '[univ]) in ℕ := +have H₁ : ∃ x, x ∈ X '[univ], from exists.intro (X 0) (mem_image_of_mem X !mem_univ), +have H₂ : ∀ x, x ∈ X '[univ] → b ≤ x, from + (take x, assume H, + obtain i [Hi₁ (Hi₂ : X i = x)], from H, + show b ≤ x, by rewrite -Hi₂; apply Hb i), +have H₃ : {x : ℝ | -x ∈ X '[univ]} = {x : ℝ | x ∈ (λ n, -X n) '[univ]}, from calc + {x : ℝ | -x ∈ X '[univ]} = (λ y, -y) '[X '[univ]] : !image_neg_eq⁻¹ + ... = {x : ℝ | x ∈ (λ n, -X n) '[univ]} : !image_compose⁻¹, +have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i), +begin+ + rewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX], + apply converges_to_seq_sup_of_nondecreasing nonincX H₄ +end + +end monotone_sequences + +section xn +open nat set + +theorem pow_converges_to_seq_zero {x : ℝ} (H : abs x < 1) : + (λ n, x^n) ⟶ 0 in ℕ := +suffices H' : (λ n, (abs x)^n) ⟶ 0 in ℕ, from + have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, !abs_pow⁻¹), + using this, + by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H', +let aX := (λ n, (abs x)^n), + iaX := inf (aX '[univ]), + asX := (λ n, (abs x)^(succ n)) in +have noninc_aX : nonincreasing aX, from + nonincreasing_of_forall_succ_le + (take i, + have (abs x) * (abs x)^i ≤ 1 * (abs x)^i, + from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg), + show (abs x) * (abs x)^i ≤ (abs x)^i, from !one_mul ▸ this), +have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg, +have aXconv : aX ⟶ iaX in ℕ, from converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX, +have asXconv : asX ⟶ iaX in ℕ, from metric_space.converges_to_seq_offset_succ aXconv, +have asXconv' : asX ⟶ (abs x) * iaX in ℕ, from mul_left_converges_to_seq (abs x) aXconv, +have iaX = (abs x) * iaX, from converges_to_seq_unique asXconv asXconv', +have iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) this⁻¹, +show aX ⟶ 0 in ℕ, from this ▸ aXconv + +end xn section continuous @@ -222,7 +556,7 @@ theorem neg_on_nbhd_of_cts_of_neg {f : ℝ → ℝ} (Hf : continuous f) {b : ℝ intro y Hy, let Hy' := and.right Hδ y Hy, let Hlt := sub_lt_of_abs_sub_lt_left Hy', - let Hlt' := lt_add_of_sub_lt_right _ _ _ Hlt, + let Hlt' := lt_add_of_sub_lt_right Hlt, rewrite [-sub_eq_add_neg at Hlt', sub_self at Hlt'], assumption end @@ -294,15 +628,15 @@ private theorem ex_delta_lt {x : ℝ} (Hx : f x < 0) (Hxb : x < b) : ∃ δ : existsi (b - x) / 2, split, {apply div_pos_of_pos_of_pos, - exact sub_pos_of_lt _ _ Hxb, + exact sub_pos_of_lt Hxb, exact two_pos}, split, {apply add_midpoint Hxb}, {apply and.right Hδ, rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg, - abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt _ _ Hxb) two_pos)], + abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hxb) two_pos)], apply lt_of_lt_of_le, - apply div_two_lt_of_pos (sub_pos_of_lt _ _ Hxb), + apply div_two_lt_of_pos (sub_pos_of_lt Hxb), apply sub_left_le_of_le_add, apply le_of_not_gt Haδ}} end @@ -402,15 +736,15 @@ private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ < existsi (b - a) / 2, split, {apply div_pos_of_pos_of_pos, - exact sub_pos_of_lt _ _ Hab, + exact sub_pos_of_lt Hab, exact two_pos}, split, {apply add_midpoint Hab}, {apply and.right Hδ, rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg, - abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt _ _ Hab) two_pos)], + abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hab) two_pos)], apply lt_of_lt_of_le, - apply div_two_lt_of_pos (sub_pos_of_lt _ _ Hab), + apply div_two_lt_of_pos (sub_pos_of_lt Hab), apply sub_left_le_of_le_add, apply le_of_not_gt Haδ}} end @@ -440,8 +774,8 @@ theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 := intro x Hx, apply le_of_not_gt, intro Hxgt, - have Hxgt' : b - x < δ, from sub_lt_of_sub_lt _ _ _ Hxgt, - rewrite -(abs_of_pos (sub_pos_of_lt _ _ (and.left Hx))) at Hxgt', + have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt, + rewrite -(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt', let Hxgt'' := and.right Hδ _ Hxgt', exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)}, {exact sup_fn_interval} @@ -468,8 +802,8 @@ theorem intermediate_value_decr_zero {f : ℝ → ℝ} (Hf : continuous f) {a b theorem intermediate_value_incr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ} (Hav : f a < v) (Hbv : f b > v) : ∃ c, a < c ∧ c < b ∧ f c = v := - have Hav' : f a - v < 0, from sub_neg_of_lt _ _ Hav, - have Hbv' : f b - v > 0, from sub_pos_of_lt _ _ Hbv, + have Hav' : f a - v < 0, from sub_neg_of_lt Hav, + have Hbv' : f b - v > 0, from sub_pos_of_lt Hbv, have Hcon : continuous (λ x, f x - v), from translate_continuous_of_continuous Hf _, have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_incr_zero Hcon Hab Hav' Hbv', obtain c Hc, from Hiv, @@ -478,8 +812,8 @@ theorem intermediate_value_incr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ theorem intermediate_value_decr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ} (Hav : f a > v) (Hbv : f b < v) : ∃ c, a < c ∧ c < b ∧ f c = v := - have Hav' : f a - v > 0, from sub_pos_of_lt _ _ Hav, - have Hbv' : f b - v < 0, from sub_neg_of_lt _ _ Hbv, + have Hav' : f a - v > 0, from sub_pos_of_lt Hav, + have Hbv' : f b - v < 0, from sub_neg_of_lt Hbv, have Hcon : continuous (λ x, f x - v), from translate_continuous_of_continuous Hf _, have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_decr_zero Hcon Hab Hav' Hbv', obtain c Hc, from Hiv,