test(tests/lean): add version of the Nat library full of holes
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
307099b1cb
commit
430b75f38f
3 changed files with 188 additions and 23 deletions
|
@ -34,50 +34,50 @@ Axiom PlusZero (a : Nat) : a + 0 = a.
|
||||||
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
||||||
Axiom MulZero (a : Nat) : a * 0 = 0.
|
Axiom MulZero (a : Nat) : a * 0 = 0.
|
||||||
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
||||||
Axiom Induction {P : Nat → Bool} (Hb : P 0) (Hi : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
||||||
|
|
||||||
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
||||||
|
|
||||||
Theorem ZeroPlus (a : Nat) : 0 + a = a
|
Theorem ZeroPlus (a : Nat) : 0 + a = a
|
||||||
:= Induction (show 0 + 0 = 0, Trivial)
|
:= Induction (show 0 + 0 = 0, Trivial)
|
||||||
(λ (n : Nat) (Hi : 0 + n = n),
|
(λ (n : Nat) (iH : 0 + n = n),
|
||||||
calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc 0 n
|
calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc 0 n
|
||||||
... = n + 1 : { Hi })
|
... = n + 1 : { iH })
|
||||||
a.
|
a.
|
||||||
|
|
||||||
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
|
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
|
||||||
:= Induction (calc (a + 1) + 0 = a + 1 : PlusZero (a + 1)
|
:= Induction (calc (a + 1) + 0 = a + 1 : PlusZero (a + 1)
|
||||||
... = (a + 0) + 1 : { Symm (PlusZero a) })
|
... = (a + 0) + 1 : { Symm (PlusZero a) })
|
||||||
(λ (n : Nat) (Hi : (a + 1) + n = (a + n) + 1),
|
(λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1),
|
||||||
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc (a + 1) n
|
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc (a + 1) n
|
||||||
... = ((a + n) + 1) + 1 : { Hi }
|
... = ((a + n) + 1) + 1 : { iH }
|
||||||
... = (a + (n + 1)) + 1 : { show (a + n) + 1 = a + (n + 1), Symm (PlusSucc a n) })
|
... = (a + (n + 1)) + 1 : { show (a + n) + 1 = a + (n + 1), Symm (PlusSucc a n) })
|
||||||
b.
|
b.
|
||||||
|
|
||||||
Theorem PlusComm (a b : Nat) : a + b = b + a
|
Theorem PlusComm (a b : Nat) : a + b = b + a
|
||||||
:= Induction (calc a + 0 = a : PlusZero a
|
:= Induction (calc a + 0 = a : PlusZero a
|
||||||
... = 0 + a : Symm (ZeroPlus a))
|
... = 0 + a : Symm (ZeroPlus a))
|
||||||
(λ (n : Nat) (Hi : a + n = n + a),
|
(λ (n : Nat) (iH : a + n = n + a),
|
||||||
calc a + (n + 1) = (a + n) + 1 : PlusSucc a n
|
calc a + (n + 1) = (a + n) + 1 : PlusSucc a n
|
||||||
... = (n + a) + 1 : { Hi }
|
... = (n + a) + 1 : { iH }
|
||||||
... = (n + 1) + a : Symm (SuccPlus n a))
|
... = (n + 1) + a : Symm (SuccPlus n a))
|
||||||
b.
|
b.
|
||||||
|
|
||||||
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
||||||
:= Induction (calc 0 + (b + c) = b + c : ZeroPlus (b + c)
|
:= Induction (calc 0 + (b + c) = b + c : ZeroPlus (b + c)
|
||||||
... = (0 + b) + c : { Symm (ZeroPlus b) })
|
... = (0 + b) + c : { Symm (ZeroPlus b) })
|
||||||
(λ (n : Nat) (Hi : n + (b + c) = (n + b) + c),
|
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
|
||||||
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus n (b + c)
|
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus n (b + c)
|
||||||
... = ((n + b) + c) + 1 : { Hi }
|
... = ((n + b) + c) + 1 : { iH }
|
||||||
... = ((n + b) + 1) + c : Symm (SuccPlus (n + b) c)
|
... = ((n + b) + 1) + c : Symm (SuccPlus (n + b) c)
|
||||||
... = ((n + 1) + b) + c : { show (n + b) + 1 = (n + 1) + b, Symm (SuccPlus n b) })
|
... = ((n + 1) + b) + c : { show (n + b) + 1 = (n + 1) + b, Symm (SuccPlus n b) })
|
||||||
a.
|
a.
|
||||||
|
|
||||||
Theorem ZeroMul (a : Nat) : 0 * a = 0
|
Theorem ZeroMul (a : Nat) : 0 * a = 0
|
||||||
:= Induction (show 0 * 0 = 0, Trivial)
|
:= Induction (show 0 * 0 = 0, Trivial)
|
||||||
(λ (n : Nat) (Hi : 0 * n = 0),
|
(λ (n : Nat) (iH : 0 * n = 0),
|
||||||
calc 0 * (n + 1) = (0 * n) + 0 : MulSucc 0 n
|
calc 0 * (n + 1) = (0 * n) + 0 : MulSucc 0 n
|
||||||
... = 0 + 0 : { Hi }
|
... = 0 + 0 : { iH }
|
||||||
... = 0 : Trivial)
|
... = 0 : Trivial)
|
||||||
a.
|
a.
|
||||||
|
|
||||||
|
@ -85,9 +85,9 @@ Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
|
||||||
:= Induction (calc (a + 1) * 0 = 0 : MulZero (a + 1)
|
:= Induction (calc (a + 1) * 0 = 0 : MulZero (a + 1)
|
||||||
... = a * 0 : Symm (MulZero a)
|
... = a * 0 : Symm (MulZero a)
|
||||||
... = a * 0 + 0 : Symm (PlusZero (a * 0)))
|
... = a * 0 + 0 : Symm (PlusZero (a * 0)))
|
||||||
(λ (n : Nat) (Hi : (a + 1) * n = a * n + n),
|
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
|
||||||
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc (a + 1) n
|
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc (a + 1) n
|
||||||
... = a * n + n + (a + 1) : { Hi }
|
... = a * n + n + (a + 1) : { iH }
|
||||||
... = a * n + n + a + 1 : PlusAssoc (a * n + n) a 1
|
... = a * n + n + a + 1 : PlusAssoc (a * n + n) a 1
|
||||||
... = a * n + (n + a) + 1 : { show a * n + n + a = a * n + (n + a), Symm (PlusAssoc (a * n) n a) }
|
... = a * n + (n + a) + 1 : { show a * n + n + a = a * n + (n + a), Symm (PlusAssoc (a * n) n a) }
|
||||||
... = a * n + (a + n) + 1 : { PlusComm n a }
|
... = a * n + (a + n) + 1 : { PlusComm n a }
|
||||||
|
@ -98,24 +98,24 @@ Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
|
||||||
|
|
||||||
Theorem OneMul (a : Nat) : 1 * a = a
|
Theorem OneMul (a : Nat) : 1 * a = a
|
||||||
:= Induction (show 1 * 0 = 0, Trivial)
|
:= Induction (show 1 * 0 = 0, Trivial)
|
||||||
(λ (n : Nat) (Hi : 1 * n = n),
|
(λ (n : Nat) (iH : 1 * n = n),
|
||||||
calc 1 * (n + 1) = 1 * n + 1 : MulSucc 1 n
|
calc 1 * (n + 1) = 1 * n + 1 : MulSucc 1 n
|
||||||
... = n + 1 : { Hi })
|
... = n + 1 : { iH })
|
||||||
a.
|
a.
|
||||||
|
|
||||||
Theorem MulOne (a : Nat) : a * 1 = a
|
Theorem MulOne (a : Nat) : a * 1 = a
|
||||||
:= Induction (show 0 * 1 = 0, Trivial)
|
:= Induction (show 0 * 1 = 0, Trivial)
|
||||||
(λ (n : Nat) (Hi : n * 1 = n),
|
(λ (n : Nat) (iH : n * 1 = n),
|
||||||
calc (n + 1) * 1 = n * 1 + 1 : SuccMul n 1
|
calc (n + 1) * 1 = n * 1 + 1 : SuccMul n 1
|
||||||
... = n + 1 : { Hi })
|
... = n + 1 : { iH })
|
||||||
a.
|
a.
|
||||||
|
|
||||||
Theorem MulComm (a b : Nat) : a * b = b * a
|
Theorem MulComm (a b : Nat) : a * b = b * a
|
||||||
:= Induction (calc a * 0 = 0 : MulZero a
|
:= Induction (calc a * 0 = 0 : MulZero a
|
||||||
... = 0 * a : Symm (ZeroMul a))
|
... = 0 * a : Symm (ZeroMul a))
|
||||||
(λ (n : Nat) (Hi : a * n = n * a),
|
(λ (n : Nat) (iH : a * n = n * a),
|
||||||
calc a * (n + 1) = a * n + a : MulSucc a n
|
calc a * (n + 1) = a * n + a : MulSucc a n
|
||||||
... = n * a + a : { Hi }
|
... = n * a + a : { iH }
|
||||||
... = (n + 1) * a : Symm (SuccMul n a))
|
... = (n + 1) * a : Symm (SuccMul n a))
|
||||||
b.
|
b.
|
||||||
|
|
||||||
|
@ -125,9 +125,9 @@ Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
||||||
... = 0 + 0 : Trivial
|
... = 0 + 0 : Trivial
|
||||||
... = 0 * b + 0 : { Symm (ZeroMul b) }
|
... = 0 * b + 0 : { Symm (ZeroMul b) }
|
||||||
... = 0 * b + 0 * c : { Symm (ZeroMul c) })
|
... = 0 * b + 0 * c : { Symm (ZeroMul c) })
|
||||||
(λ (n : Nat) (Hi : n * (b + c) = n * b + n * c),
|
(λ (n : Nat) (iH : n * (b + c) = n * b + n * c),
|
||||||
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul n (b + c)
|
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul n (b + c)
|
||||||
... = n * b + n * c + (b + c) : { Hi }
|
... = n * b + n * c + (b + c) : { iH }
|
||||||
... = n * b + n * c + b + c : PlusAssoc (n * b + n * c) b c
|
... = n * b + n * c + b + c : PlusAssoc (n * b + n * c) b c
|
||||||
... = n * b + (n * c + b) + c : { Symm (PlusAssoc (n * b) (n * c) b) }
|
... = n * b + (n * c + b) + c : { Symm (PlusAssoc (n * b) (n * c) b) }
|
||||||
... = n * b + (b + n * c) + c : { PlusComm (n * c) b }
|
... = n * b + (b + n * c) + c : { PlusComm (n * c) b }
|
||||||
|
@ -147,9 +147,9 @@ Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
|
||||||
:= Induction (calc 0 * (b * c) = 0 : ZeroMul (b * c)
|
:= Induction (calc 0 * (b * c) = 0 : ZeroMul (b * c)
|
||||||
... = 0 * c : Symm (ZeroMul c)
|
... = 0 * c : Symm (ZeroMul c)
|
||||||
... = (0 * b) * c : { Symm (ZeroMul b) })
|
... = (0 * b) * c : { Symm (ZeroMul b) })
|
||||||
(λ (n : Nat) (Hi : n * (b * c) = n * b * c),
|
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
|
||||||
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul n (b * c)
|
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul n (b * c)
|
||||||
... = n * b * c + (b * c) : { Hi }
|
... = n * b * c + (b * c) : { iH }
|
||||||
... = (n * b + b) * c : Symm (Distribute2 (n * b) b c)
|
... = (n * b + b) * c : Symm (Distribute2 (n * b) b c)
|
||||||
... = (n + 1) * b * c : { Symm (SuccMul n b) })
|
... = (n + 1) * b * c : { Symm (SuccMul n b) })
|
||||||
a.
|
a.
|
||||||
|
|
Binary file not shown.
165
tests/lean/bare/NatHoles.lean
Normal file
165
tests/lean/bare/NatHoles.lean
Normal file
|
@ -0,0 +1,165 @@
|
||||||
|
(*
|
||||||
|
Nat library full of "holes".
|
||||||
|
We provide only the proof skeletons, and let Lean infer the rest.
|
||||||
|
*)
|
||||||
|
Import kernel.
|
||||||
|
|
||||||
|
Variable Nat : Type.
|
||||||
|
Alias ℕ : Nat.
|
||||||
|
|
||||||
|
Namespace Nat.
|
||||||
|
Builtin numeral.
|
||||||
|
|
||||||
|
Builtin add : Nat → Nat → Nat.
|
||||||
|
Infixl 65 + : add.
|
||||||
|
|
||||||
|
Builtin mul : Nat → Nat → Nat.
|
||||||
|
Infixl 70 * : mul.
|
||||||
|
|
||||||
|
Builtin le : Nat → Nat → Bool.
|
||||||
|
Infix 50 <= : le.
|
||||||
|
Infix 50 ≤ : le.
|
||||||
|
|
||||||
|
Definition ge (a b : Nat) := b ≤ a.
|
||||||
|
Infix 50 >= : ge.
|
||||||
|
Infix 50 ≥ : ge.
|
||||||
|
|
||||||
|
Definition lt (a b : Nat) := ¬ (a ≥ b).
|
||||||
|
Infix 50 < : lt.
|
||||||
|
|
||||||
|
Definition gt (a b : Nat) := ¬ (a ≤ b).
|
||||||
|
Infix 50 > : gt.
|
||||||
|
|
||||||
|
Definition id (a : Nat) := a.
|
||||||
|
Notation 55 | _ | : id.
|
||||||
|
|
||||||
|
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
|
||||||
|
Axiom PlusZero (a : Nat) : a + 0 = a.
|
||||||
|
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
||||||
|
Axiom MulZero (a : Nat) : a * 0 = 0.
|
||||||
|
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
||||||
|
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
||||||
|
|
||||||
|
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
||||||
|
|
||||||
|
Theorem ZeroPlus (a : Nat) : 0 + a = a
|
||||||
|
:= Induction (show 0 + 0 = 0, Trivial)
|
||||||
|
(λ (n : Nat) (iH : 0 + n = n),
|
||||||
|
calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc _ _
|
||||||
|
... = n + 1 : { iH })
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1
|
||||||
|
:= Induction (calc (a + 1) + 0 = a + 1 : PlusZero _
|
||||||
|
... = (a + 0) + 1 : { Symm (PlusZero _) })
|
||||||
|
(λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1),
|
||||||
|
calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc _ _
|
||||||
|
... = ((a + n) + 1) + 1 : { iH }
|
||||||
|
... = (a + (n + 1)) + 1 : { Symm (PlusSucc _ _) })
|
||||||
|
b.
|
||||||
|
|
||||||
|
Theorem PlusComm (a b : Nat) : a + b = b + a
|
||||||
|
:= Induction (calc a + 0 = a : PlusZero a
|
||||||
|
... = 0 + a : Symm (ZeroPlus a))
|
||||||
|
(λ (n : Nat) (iH : a + n = n + a),
|
||||||
|
calc a + (n + 1) = (a + n) + 1 : PlusSucc _ _
|
||||||
|
... = (n + a) + 1 : { iH }
|
||||||
|
... = (n + 1) + a : Symm (SuccPlus _ _))
|
||||||
|
b.
|
||||||
|
|
||||||
|
Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
||||||
|
:= Induction (calc 0 + (b + c) = b + c : ZeroPlus _
|
||||||
|
... = (0 + b) + c : { Symm (ZeroPlus _) })
|
||||||
|
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
|
||||||
|
calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus _ _
|
||||||
|
... = ((n + b) + c) + 1 : { iH }
|
||||||
|
... = ((n + b) + 1) + c : Symm (SuccPlus _ _)
|
||||||
|
... = ((n + 1) + b) + c : { Symm (SuccPlus _ _) })
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem ZeroMul (a : Nat) : 0 * a = 0
|
||||||
|
:= Induction (show 0 * 0 = 0, Trivial)
|
||||||
|
(λ (n : Nat) (iH : 0 * n = 0),
|
||||||
|
calc 0 * (n + 1) = (0 * n) + 0 : MulSucc _ _
|
||||||
|
... = 0 + 0 : { iH }
|
||||||
|
... = 0 : Trivial)
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
|
||||||
|
:= Induction (calc (a + 1) * 0 = 0 : MulZero _
|
||||||
|
... = a * 0 : Symm (MulZero _)
|
||||||
|
... = a * 0 + 0 : Symm (PlusZero _))
|
||||||
|
(λ (n : Nat) (iH : (a + 1) * n = a * n + n),
|
||||||
|
calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc _ _
|
||||||
|
... = a * n + n + (a + 1) : { iH }
|
||||||
|
... = a * n + n + a + 1 : PlusAssoc _ _ _
|
||||||
|
... = a * n + (n + a) + 1 : { Symm (PlusAssoc _ _ _) }
|
||||||
|
... = a * n + (a + n) + 1 : { PlusComm _ _ }
|
||||||
|
... = a * n + a + n + 1 : { PlusAssoc _ _ _ }
|
||||||
|
... = a * (n + 1) + n + 1 : { Symm (MulSucc _ _) }
|
||||||
|
... = a * (n + 1) + (n + 1) : Symm (PlusAssoc _ _ _))
|
||||||
|
b.
|
||||||
|
|
||||||
|
Theorem OneMul (a : Nat) : 1 * a = a
|
||||||
|
:= Induction (show 1 * 0 = 0, Trivial)
|
||||||
|
(λ (n : Nat) (iH : 1 * n = n),
|
||||||
|
calc 1 * (n + 1) = 1 * n + 1 : MulSucc _ _
|
||||||
|
... = n + 1 : { iH })
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem MulOne (a : Nat) : a * 1 = a
|
||||||
|
:= Induction (show 0 * 1 = 0, Trivial)
|
||||||
|
(λ (n : Nat) (iH : n * 1 = n),
|
||||||
|
calc (n + 1) * 1 = n * 1 + 1 : SuccMul _ _
|
||||||
|
... = n + 1 : { iH })
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem MulComm (a b : Nat) : a * b = b * a
|
||||||
|
:= Induction (calc a * 0 = 0 : MulZero a
|
||||||
|
... = 0 * a : Symm (ZeroMul a))
|
||||||
|
(λ (n : Nat) (iH : a * n = n * a),
|
||||||
|
calc a * (n + 1) = a * n + a : MulSucc _ _
|
||||||
|
... = n * a + a : { iH }
|
||||||
|
... = (n + 1) * a : Symm (SuccMul _ _))
|
||||||
|
b.
|
||||||
|
|
||||||
|
|
||||||
|
Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
||||||
|
:= Induction (calc 0 * (b + c) = 0 : ZeroMul _
|
||||||
|
... = 0 + 0 : Trivial
|
||||||
|
... = 0 * b + 0 : { Symm (ZeroMul _) }
|
||||||
|
... = 0 * b + 0 * c : { Symm (ZeroMul _) })
|
||||||
|
(λ (n : Nat) (iH : n * (b + c) = n * b + n * c),
|
||||||
|
calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul _ _
|
||||||
|
... = n * b + n * c + (b + c) : { iH }
|
||||||
|
... = n * b + n * c + b + c : PlusAssoc _ _ _
|
||||||
|
... = n * b + (n * c + b) + c : { Symm (PlusAssoc _ _ _) }
|
||||||
|
... = n * b + (b + n * c) + c : { PlusComm _ _ }
|
||||||
|
... = n * b + b + n * c + c : { PlusAssoc _ _ _ }
|
||||||
|
... = (n + 1) * b + n * c + c : { Symm (SuccMul _ _) }
|
||||||
|
... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc _ _ _)
|
||||||
|
... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul _ _) })
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
|
||||||
|
:= calc (a + b) * c = c * (a + b) : MulComm _ _
|
||||||
|
... = c * a + c * b : Distribute _ _ _
|
||||||
|
... = a * c + c * b : { MulComm _ _ }
|
||||||
|
... = a * c + b * c : { MulComm _ _}.
|
||||||
|
|
||||||
|
Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
|
||||||
|
:= Induction (calc 0 * (b * c) = 0 : ZeroMul _
|
||||||
|
... = 0 * c : Symm (ZeroMul _)
|
||||||
|
... = (0 * b) * c : { Symm (ZeroMul _) })
|
||||||
|
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
|
||||||
|
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul _ _
|
||||||
|
... = n * b * c + (b * c) : { iH }
|
||||||
|
... = (n * b + b) * c : Symm (Distribute2 _ _ _)
|
||||||
|
... = (n + 1) * b * c : { Symm (SuccMul _ _) })
|
||||||
|
a.
|
||||||
|
|
||||||
|
SetOpaque ge true.
|
||||||
|
SetOpaque lt true.
|
||||||
|
SetOpaque gt true.
|
||||||
|
SetOpaque id true.
|
||||||
|
EndNamespace.
|
Loading…
Reference in a new issue