feat(homotopy/circle): give all higher homotopy groups of the circle

This commit is contained in:
Floris van Doorn 2015-11-18 18:08:38 -05:00 committed by Leonardo de Moura
parent 810a399699
commit 45d808ce7f
8 changed files with 106 additions and 19 deletions

View file

@ -6,41 +6,41 @@ Authors: Floris van Doorn
homotopy groups of a pointed space homotopy groups of a pointed space
-/ -/
import types.pointed .trunc_group import types.pointed .trunc_group .hott types.trunc
open nat eq pointed trunc is_trunc algebra open nat eq pointed trunc is_trunc algebra
namespace eq namespace eq
definition homotopy_group [reducible] (n : ) (A : Pointed) : Type := definition homotopy_group [reducible] (n : ) (A : Type*) : Type :=
trunc 0 (Ω[n] A) trunc 0 (Ω[n] A)
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
definition pointed_homotopy_group [instance] [constructor] (n : ) (A : Pointed) definition pointed_homotopy_group [instance] [constructor] (n : ) (A : Type*)
: pointed (π[n] A) := : pointed (π[n] A) :=
pointed.mk (tr rfln) pointed.mk (tr rfln)
definition group_homotopy_group [instance] [constructor] (n : ) (A : Pointed) definition group_homotopy_group [instance] [constructor] (n : ) (A : Type*)
: group (π[succ n] A) := : group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition comm_group_homotopy_group [constructor] (n : ) (A : Pointed) definition comm_group_homotopy_group [constructor] (n : ) (A : Type*)
: comm_group (π[succ (succ n)] A) := : comm_group (π[succ (succ n)] A) :=
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute comm_group_homotopy_group [instance] local attribute comm_group_homotopy_group [instance]
definition Pointed_homotopy_group [constructor] (n : ) (A : Pointed) : Pointed := definition Pointed_homotopy_group [constructor] (n : ) (A : Type*) : Type* :=
Pointed.mk (π[n] A) Pointed.mk (π[n] A)
definition Group_homotopy_group [constructor] (n : ) (A : Pointed) : Group := definition Group_homotopy_group [constructor] (n : ) (A : Type*) : Group :=
Group.mk (π[succ n] A) _ Group.mk (π[succ n] A) _
definition CommGroup_homotopy_group [constructor] (n : ) (A : Pointed) : CommGroup := definition CommGroup_homotopy_group [constructor] (n : ) (A : Type*) : CommGroup :=
CommGroup.mk (π[succ (succ n)] A) _ CommGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Pointed) : Group := definition fundamental_group [constructor] (A : Type*) : Group :=
Group_homotopy_group zero A Group_homotopy_group zero A
notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A
@ -49,5 +49,37 @@ namespace eq
prefix `π₁`:95 := fundamental_group prefix `π₁`:95 := fundamental_group
open equiv unit
theorem trivial_homotopy_of_is_hset (A : Type*) [H : is_hset A] (n : ) : πG[n+1] A = G0 :=
begin
apply trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply is_trunc_succ_succ_of_is_hset
end
definition homotopy_group_succ_out (A : Type*) (n : ) : πG[ n +1] A = π₁ Ω[n] A := idp
definition homotopy_group_succ_in (A : Type*) (n : ) : πG[succ n +1] A = πG[n +1] Ω A :=
begin
fapply Group_eq,
{ apply equiv_of_eq, exact ap (λ(X : Type*), trunc 0 X) (loop_space_succ_eq_in A (succ n))},
{ exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q,
rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport, ↑[group_homotopy_group, group.to_monoid,
monoid.to_semigroup, semigroup.to_has_mul, trunc_mul], trunc_transport], apply ap tr,
apply loop_space_succ_eq_in_concat end end},
end
definition homotopy_group_add (A : Type*) (n m : ) : πG[n+m +1] A = πG[n +1] Ω[m] A :=
begin
revert A, induction m with m IH: intro A,
{ reflexivity},
{ esimp [Iterated_loop_space, nat.add], refine !homotopy_group_succ_in ⬝ _, refine !IH ⬝ _,
exact ap (Group_homotopy_group n) !loop_space_succ_eq_in⁻¹}
end
theorem trivial_homotopy_of_is_hset_loop_space {A : Type*} {n : } (m : ) (H : is_hset (Ω[n] A))
: πG[m+n+1] A = G0 :=
!homotopy_group_add ⬝ !trivial_homotopy_of_is_hset
end eq end eq

View file

@ -6,7 +6,7 @@ Author: Floris van Doorn
Theorems about algebra specific to HoTT Theorems about algebra specific to HoTT
-/ -/
import .group arity types.pi hprop_trunc import .group arity types.pi hprop_trunc types.unit
open equiv eq equiv.ops is_trunc open equiv eq equiv.ops is_trunc
@ -30,7 +30,7 @@ namespace algebra
from λg, !mul_inv_cancel_right⁻¹, from λg, !mul_inv_cancel_right⁻¹,
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
rewrite [↑[semigroup.to_has_mul,group.to_has_inv] at (same_mul,foo)] , rewrite [↑[semigroup.to_has_mul,group.to_has_inv] at (same_mul,foo)],
have same_mul : Gm = Hm, from eq_of_homotopy2 same_mul', have same_mul : Gm = Hm, from eq_of_homotopy2 same_mul',
cases same_mul, cases same_mul,
have same_one : G1 = H1, from calc have same_one : G1 = H1, from calc
@ -49,7 +49,8 @@ namespace algebra
cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity
end end
definition group_pathover {G : group A} {H : group B} {f : A ≃ B} : (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H := definition group_pathover {G : group A} {H : group B} {f : A ≃ B}
: (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H :=
begin begin
revert H, revert H,
eapply (rec_on_ua_idp' f), eapply (rec_on_ua_idp' f),
@ -67,4 +68,11 @@ namespace algebra
apply group_pathover, exact resp_mul apply group_pathover, exact resp_mul
end end
definition trivial_group_of_is_contr (G : Group) [H : is_contr G] : G = G0 :=
begin
fapply Group_eq,
{ apply equiv_unit_of_is_contr},
{ intros, reflexivity}
end
end algebra end algebra

View file

@ -192,8 +192,7 @@ namespace circle
definition transport_code_loop (a : ) : transport circle.code loop a = succ a := definition transport_code_loop (a : ) : transport circle.code loop a = succ a :=
ap10 !elim_type_loop a ap10 !elim_type_loop a
definition transport_code_loop_inv (a : ) definition transport_code_loop_inv (a : ) : transport circle.code loop⁻¹ a = pred a :=
: transport circle.code loop⁻¹ a = pred a :=
ap10 !elim_type_loop_inv a ap10 !elim_type_loop_inv a
protected definition encode [unfold 2] {x : circle} (p : base = x) : circle.code x := protected definition encode [unfold 2] {x : circle} (p : base = x) : circle.code x :=
@ -228,15 +227,14 @@ namespace circle
definition base_eq_base_equiv [constructor] : base = base ≃ := definition base_eq_base_equiv [constructor] : base = base ≃ :=
circle_eq_equiv base circle_eq_equiv base
definition decode_add (a b : ) : definition decode_add (a b : ) : circle.decode a ⬝ circle.decode b = circle.decode (a + b) :=
base_eq_base_equiv⁻¹ a ⬝ base_eq_base_equiv⁻¹ b = base_eq_base_equiv⁻¹ (a + b) :=
!power_con_power !power_con_power
definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p + circle.encode q := definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p + circle.encode q :=
preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q
--the carrier of π₁(S¹) is the set-truncation of base = base. --the carrier of π₁(S¹) is the set-truncation of base = base.
open core algebra trunc equiv.ops open algebra trunc equiv.ops
definition fg_carrier_equiv_int : π[1](S¹.) ≃ := definition fg_carrier_equiv_int : π[1](S¹.) ≃ :=
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !trunc_equiv trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !trunc_equiv
@ -251,6 +249,13 @@ namespace circle
apply encode_con, apply encode_con,
end end
open nat
definition homotopy_group_of_circle (n : ) : πG[n+1 +1] S¹. = G0 :=
begin
refine @trivial_homotopy_of_is_hset_loop_space S¹. 1 n _,
apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv
end
definition eq_equiv_Z (x : S¹) : x = x ≃ := definition eq_equiv_Z (x : S¹) : x = x ≃ :=
begin begin
induction x, induction x,

View file

@ -280,6 +280,7 @@ namespace is_trunc
open equiv open equiv
-- A contractible type is equivalent to [Unit]. *) -- A contractible type is equivalent to [Unit]. *)
variable (A)
definition equiv_unit_of_is_contr [H : is_contr A] : A ≃ unit := definition equiv_unit_of_is_contr [H : is_contr A] : A ≃ unit :=
equiv.MK (λ (x : A), ⋆) equiv.MK (λ (x : A), ⋆)
(λ (u : unit), center A) (λ (u : unit), center A)
@ -287,6 +288,7 @@ namespace is_trunc
(λ (x : A), center_eq x) (λ (x : A), center_eq x)
/- interaction with pathovers -/ /- interaction with pathovers -/
variable {A}
variables {C : A → Type} variables {C : A → Type}
{a a₂ : A} (p : a = a₂) {a a₂ : A} (p : a = a₂)
(c : C a) (c₂ : C a₂) (c : C a) (c₂ : C a₂)

View file

@ -83,7 +83,7 @@ definition mul (a b : ) : :=
/- notation -/ /- notation -/
notation `-[` n `+1]` := int.neg_succ_of_nat n -- for pretty-printing output notation `-[`:95 n:0 `+1]`:0 := int.neg_succ_of_nat n -- for pretty-printing output
prefix - := int.neg prefix - := int.neg
infix + := int.add infix + := int.add
infix * := int.mul infix * := int.mul

View file

@ -60,6 +60,9 @@ namespace pointed
definition Bool [constructor] : Type* := definition Bool [constructor] : Type* :=
pointed.mk' bool pointed.mk' bool
definition Unit [constructor] : Type* :=
Pointed.mk unit.star
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B := definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt) pointed.mk (f pt)
@ -243,6 +246,18 @@ namespace pointed
idp idp
variable {A} variable {A}
/- the equality [loop_space_succ_eq_in] preserves concatenation -/
theorem loop_space_succ_eq_in_concat {n : } (p q : Ω[succ (succ n)] A) :
transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) (p ⬝ q)
= transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) p
⬝ transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) q :=
begin
rewrite [-+tr_compose, ↑function.compose],
rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left,
rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con]
end
definition loop_space_loop_irrel (p : point A = point A) : Ω(Pointed.mk p) = Ω[2] A := definition loop_space_loop_irrel (p : point A = point A) : Ω(Pointed.mk p) = Ω[2] A :=
begin begin
intros, fapply Pointed_eq, intros, fapply Pointed_eq,

View file

@ -145,7 +145,7 @@ namespace is_trunc
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) : theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) := is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn) iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
--set_option pp.all true
theorem is_trunc_iff_is_contr_loop_succ (n : ) (A : Type) theorem is_trunc_iff_is_contr_loop_succ (n : ) (A : Type)
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](Pointed.mk a)) := : is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](Pointed.mk a)) :=
begin begin
@ -171,6 +171,11 @@ namespace is_trunc
{ apply is_trunc_iff_is_contr_loop_succ}, { apply is_trunc_iff_is_contr_loop_succ},
end end
theorem is_contr_loop_of_is_trunc (n : ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
is_contr (Ω[n] A) :=
by induction A; exact iff.mp !is_trunc_iff_is_contr_loop _ _
end is_trunc open is_trunc end is_trunc open is_trunc
namespace trunc namespace trunc
@ -231,6 +236,10 @@ namespace trunc
: P a := : P a :=
!trunc_equiv (f a) !trunc_equiv (f a)
/- transport over a truncated family -/
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : trunc_index) (x : P a)
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
by induction p; reflexivity
end trunc open trunc end trunc open trunc

View file

@ -6,6 +6,8 @@ Authors: Floris van Doorn
Theorems about the unit type Theorems about the unit type
-/ -/
import algebra.group
open equiv option eq open equiv option eq
namespace unit namespace unit
@ -32,3 +34,17 @@ namespace unit
end end
end unit end unit
open unit is_trunc
namespace algebra
definition trivial_group [constructor] : group unit :=
group.mk (λx y, star) _ (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp)
definition Trivial_group [constructor] : Group :=
Group.mk _ trivial_group
notation `G0` := Trivial_group
end algebra