feat(homotopy/circle): give all higher homotopy groups of the circle
This commit is contained in:
parent
810a399699
commit
45d808ce7f
8 changed files with 106 additions and 19 deletions
|
@ -6,41 +6,41 @@ Authors: Floris van Doorn
|
|||
homotopy groups of a pointed space
|
||||
-/
|
||||
|
||||
import types.pointed .trunc_group
|
||||
import types.pointed .trunc_group .hott types.trunc
|
||||
|
||||
open nat eq pointed trunc is_trunc algebra
|
||||
|
||||
namespace eq
|
||||
|
||||
definition homotopy_group [reducible] (n : ℕ) (A : Pointed) : Type :=
|
||||
definition homotopy_group [reducible] (n : ℕ) (A : Type*) : Type :=
|
||||
trunc 0 (Ω[n] A)
|
||||
|
||||
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
|
||||
|
||||
definition pointed_homotopy_group [instance] [constructor] (n : ℕ) (A : Pointed)
|
||||
definition pointed_homotopy_group [instance] [constructor] (n : ℕ) (A : Type*)
|
||||
: pointed (π[n] A) :=
|
||||
pointed.mk (tr rfln)
|
||||
|
||||
definition group_homotopy_group [instance] [constructor] (n : ℕ) (A : Pointed)
|
||||
definition group_homotopy_group [instance] [constructor] (n : ℕ) (A : Type*)
|
||||
: group (π[succ n] A) :=
|
||||
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
|
||||
|
||||
definition comm_group_homotopy_group [constructor] (n : ℕ) (A : Pointed)
|
||||
definition comm_group_homotopy_group [constructor] (n : ℕ) (A : Type*)
|
||||
: comm_group (π[succ (succ n)] A) :=
|
||||
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
|
||||
|
||||
local attribute comm_group_homotopy_group [instance]
|
||||
|
||||
definition Pointed_homotopy_group [constructor] (n : ℕ) (A : Pointed) : Pointed :=
|
||||
definition Pointed_homotopy_group [constructor] (n : ℕ) (A : Type*) : Type* :=
|
||||
Pointed.mk (π[n] A)
|
||||
|
||||
definition Group_homotopy_group [constructor] (n : ℕ) (A : Pointed) : Group :=
|
||||
definition Group_homotopy_group [constructor] (n : ℕ) (A : Type*) : Group :=
|
||||
Group.mk (π[succ n] A) _
|
||||
|
||||
definition CommGroup_homotopy_group [constructor] (n : ℕ) (A : Pointed) : CommGroup :=
|
||||
definition CommGroup_homotopy_group [constructor] (n : ℕ) (A : Type*) : CommGroup :=
|
||||
CommGroup.mk (π[succ (succ n)] A) _
|
||||
|
||||
definition fundamental_group [constructor] (A : Pointed) : Group :=
|
||||
definition fundamental_group [constructor] (A : Type*) : Group :=
|
||||
Group_homotopy_group zero A
|
||||
|
||||
notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A
|
||||
|
@ -49,5 +49,37 @@ namespace eq
|
|||
|
||||
prefix `π₁`:95 := fundamental_group
|
||||
|
||||
open equiv unit
|
||||
theorem trivial_homotopy_of_is_hset (A : Type*) [H : is_hset A] (n : ℕ) : πG[n+1] A = G0 :=
|
||||
begin
|
||||
apply trivial_group_of_is_contr,
|
||||
apply is_trunc_trunc_of_is_trunc,
|
||||
apply is_contr_loop_of_is_trunc,
|
||||
apply is_trunc_succ_succ_of_is_hset
|
||||
end
|
||||
|
||||
definition homotopy_group_succ_out (A : Type*) (n : ℕ) : πG[ n +1] A = π₁ Ω[n] A := idp
|
||||
|
||||
definition homotopy_group_succ_in (A : Type*) (n : ℕ) : πG[succ n +1] A = πG[n +1] Ω A :=
|
||||
begin
|
||||
fapply Group_eq,
|
||||
{ apply equiv_of_eq, exact ap (λ(X : Type*), trunc 0 X) (loop_space_succ_eq_in A (succ n))},
|
||||
{ exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q,
|
||||
rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport, ↑[group_homotopy_group, group.to_monoid,
|
||||
monoid.to_semigroup, semigroup.to_has_mul, trunc_mul], trunc_transport], apply ap tr,
|
||||
apply loop_space_succ_eq_in_concat end end},
|
||||
end
|
||||
|
||||
definition homotopy_group_add (A : Type*) (n m : ℕ) : πG[n+m +1] A = πG[n +1] Ω[m] A :=
|
||||
begin
|
||||
revert A, induction m with m IH: intro A,
|
||||
{ reflexivity},
|
||||
{ esimp [Iterated_loop_space, nat.add], refine !homotopy_group_succ_in ⬝ _, refine !IH ⬝ _,
|
||||
exact ap (Group_homotopy_group n) !loop_space_succ_eq_in⁻¹}
|
||||
end
|
||||
|
||||
theorem trivial_homotopy_of_is_hset_loop_space {A : Type*} {n : ℕ} (m : ℕ) (H : is_hset (Ω[n] A))
|
||||
: πG[m+n+1] A = G0 :=
|
||||
!homotopy_group_add ⬝ !trivial_homotopy_of_is_hset
|
||||
|
||||
end eq
|
||||
|
|
|
@ -6,7 +6,7 @@ Author: Floris van Doorn
|
|||
Theorems about algebra specific to HoTT
|
||||
-/
|
||||
|
||||
import .group arity types.pi hprop_trunc
|
||||
import .group arity types.pi hprop_trunc types.unit
|
||||
|
||||
open equiv eq equiv.ops is_trunc
|
||||
|
||||
|
@ -49,7 +49,8 @@ namespace algebra
|
|||
cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity
|
||||
end
|
||||
|
||||
definition group_pathover {G : group A} {H : group B} {f : A ≃ B} : (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H :=
|
||||
definition group_pathover {G : group A} {H : group B} {f : A ≃ B}
|
||||
: (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H :=
|
||||
begin
|
||||
revert H,
|
||||
eapply (rec_on_ua_idp' f),
|
||||
|
@ -67,4 +68,11 @@ namespace algebra
|
|||
apply group_pathover, exact resp_mul
|
||||
end
|
||||
|
||||
definition trivial_group_of_is_contr (G : Group) [H : is_contr G] : G = G0 :=
|
||||
begin
|
||||
fapply Group_eq,
|
||||
{ apply equiv_unit_of_is_contr},
|
||||
{ intros, reflexivity}
|
||||
end
|
||||
|
||||
end algebra
|
||||
|
|
|
@ -192,8 +192,7 @@ namespace circle
|
|||
definition transport_code_loop (a : ℤ) : transport circle.code loop a = succ a :=
|
||||
ap10 !elim_type_loop a
|
||||
|
||||
definition transport_code_loop_inv (a : ℤ)
|
||||
: transport circle.code loop⁻¹ a = pred a :=
|
||||
definition transport_code_loop_inv (a : ℤ) : transport circle.code loop⁻¹ a = pred a :=
|
||||
ap10 !elim_type_loop_inv a
|
||||
|
||||
protected definition encode [unfold 2] {x : circle} (p : base = x) : circle.code x :=
|
||||
|
@ -228,15 +227,14 @@ namespace circle
|
|||
definition base_eq_base_equiv [constructor] : base = base ≃ ℤ :=
|
||||
circle_eq_equiv base
|
||||
|
||||
definition decode_add (a b : ℤ) :
|
||||
base_eq_base_equiv⁻¹ a ⬝ base_eq_base_equiv⁻¹ b = base_eq_base_equiv⁻¹ (a + b) :=
|
||||
definition decode_add (a b : ℤ) : circle.decode a ⬝ circle.decode b = circle.decode (a + b) :=
|
||||
!power_con_power
|
||||
|
||||
definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p + circle.encode q :=
|
||||
preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q
|
||||
|
||||
--the carrier of π₁(S¹) is the set-truncation of base = base.
|
||||
open core algebra trunc equiv.ops
|
||||
open algebra trunc equiv.ops
|
||||
definition fg_carrier_equiv_int : π[1](S¹.) ≃ ℤ :=
|
||||
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !trunc_equiv
|
||||
|
||||
|
@ -251,6 +249,13 @@ namespace circle
|
|||
apply encode_con,
|
||||
end
|
||||
|
||||
open nat
|
||||
definition homotopy_group_of_circle (n : ℕ) : πG[n+1 +1] S¹. = G0 :=
|
||||
begin
|
||||
refine @trivial_homotopy_of_is_hset_loop_space S¹. 1 n _,
|
||||
apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv
|
||||
end
|
||||
|
||||
definition eq_equiv_Z (x : S¹) : x = x ≃ ℤ :=
|
||||
begin
|
||||
induction x,
|
||||
|
|
|
@ -280,6 +280,7 @@ namespace is_trunc
|
|||
|
||||
open equiv
|
||||
-- A contractible type is equivalent to [Unit]. *)
|
||||
variable (A)
|
||||
definition equiv_unit_of_is_contr [H : is_contr A] : A ≃ unit :=
|
||||
equiv.MK (λ (x : A), ⋆)
|
||||
(λ (u : unit), center A)
|
||||
|
@ -287,6 +288,7 @@ namespace is_trunc
|
|||
(λ (x : A), center_eq x)
|
||||
|
||||
/- interaction with pathovers -/
|
||||
variable {A}
|
||||
variables {C : A → Type}
|
||||
{a a₂ : A} (p : a = a₂)
|
||||
(c : C a) (c₂ : C a₂)
|
||||
|
|
|
@ -83,7 +83,7 @@ definition mul (a b : ℤ) : ℤ :=
|
|||
|
||||
/- notation -/
|
||||
|
||||
notation `-[` n `+1]` := int.neg_succ_of_nat n -- for pretty-printing output
|
||||
notation `-[`:95 n:0 `+1]`:0 := int.neg_succ_of_nat n -- for pretty-printing output
|
||||
prefix - := int.neg
|
||||
infix + := int.add
|
||||
infix * := int.mul
|
||||
|
|
|
@ -60,6 +60,9 @@ namespace pointed
|
|||
definition Bool [constructor] : Type* :=
|
||||
pointed.mk' bool
|
||||
|
||||
definition Unit [constructor] : Type* :=
|
||||
Pointed.mk unit.star
|
||||
|
||||
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
|
||||
pointed.mk (f pt)
|
||||
|
||||
|
@ -243,6 +246,18 @@ namespace pointed
|
|||
idp
|
||||
|
||||
variable {A}
|
||||
|
||||
/- the equality [loop_space_succ_eq_in] preserves concatenation -/
|
||||
theorem loop_space_succ_eq_in_concat {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
||||
transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) (p ⬝ q)
|
||||
= transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) p
|
||||
⬝ transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) q :=
|
||||
begin
|
||||
rewrite [-+tr_compose, ↑function.compose],
|
||||
rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left,
|
||||
rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con]
|
||||
end
|
||||
|
||||
definition loop_space_loop_irrel (p : point A = point A) : Ω(Pointed.mk p) = Ω[2] A :=
|
||||
begin
|
||||
intros, fapply Pointed_eq,
|
||||
|
|
|
@ -145,7 +145,7 @@ namespace is_trunc
|
|||
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
|
||||
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
|
||||
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
|
||||
--set_option pp.all true
|
||||
|
||||
theorem is_trunc_iff_is_contr_loop_succ (n : ℕ) (A : Type)
|
||||
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](Pointed.mk a)) :=
|
||||
begin
|
||||
|
@ -171,6 +171,11 @@ namespace is_trunc
|
|||
{ apply is_trunc_iff_is_contr_loop_succ},
|
||||
end
|
||||
|
||||
theorem is_contr_loop_of_is_trunc (n : ℕ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
|
||||
is_contr (Ω[n] A) :=
|
||||
by induction A; exact iff.mp !is_trunc_iff_is_contr_loop _ _
|
||||
|
||||
|
||||
end is_trunc open is_trunc
|
||||
|
||||
namespace trunc
|
||||
|
@ -231,6 +236,10 @@ namespace trunc
|
|||
: P a :=
|
||||
!trunc_equiv (f a)
|
||||
|
||||
/- transport over a truncated family -/
|
||||
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : trunc_index) (x : P a)
|
||||
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
end trunc open trunc
|
||||
|
||||
|
|
|
@ -6,6 +6,8 @@ Authors: Floris van Doorn
|
|||
Theorems about the unit type
|
||||
-/
|
||||
|
||||
import algebra.group
|
||||
|
||||
open equiv option eq
|
||||
|
||||
namespace unit
|
||||
|
@ -32,3 +34,17 @@ namespace unit
|
|||
end
|
||||
|
||||
end unit
|
||||
|
||||
open unit is_trunc
|
||||
|
||||
namespace algebra
|
||||
|
||||
definition trivial_group [constructor] : group unit :=
|
||||
group.mk (λx y, star) _ (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp)
|
||||
|
||||
definition Trivial_group [constructor] : Group :=
|
||||
Group.mk _ trivial_group
|
||||
|
||||
notation `G0` := Trivial_group
|
||||
|
||||
end algebra
|
||||
|
|
Loading…
Reference in a new issue