diff --git a/library/data/nat/wf.lean b/library/data/nat/wf.lean index 4ce4c360e..d043913fc 100644 --- a/library/data/nat/wf.lean +++ b/library/data/nat/wf.lean @@ -4,9 +4,36 @@ import data.nat.order logic.wf open nat eq.ops +namespace nat + +inductive pred_rel : nat → nat → Prop := +intro : Π (n : nat), pred_rel n (succ n) + +definition not_pred_rel_zero (n : nat) : ¬ pred_rel n zero := +have aux : ∀{m}, pred_rel n m → succ n = m, from + λm H, pred_rel.rec_on H (take n, rfl), +assume H : pred_rel n zero, + absurd (aux H) !succ_ne_zero + +definition pred_rel_succ {a b : nat} (H : pred_rel a (succ b)) : b = a := +have aux : pred (succ b) = a, from + pred_rel.rec_on H (λn, rfl), +aux + +-- Predecessor relation is well-founded +definition pred_rel.wf : well_founded pred_rel := +well_founded.intro + (λn, induction_on n + (acc.intro zero (λy (H : pred_rel y zero), absurd H (not_pred_rel_zero y))) + (λa (iH : acc pred_rel a), + acc.intro (succ a) (λy (H : pred_rel y (succ a)), + have aux : a = y, from pred_rel_succ H, + eq.rec_on aux iH))) + +-- Less-than relation is well-founded definition lt.wf [instance] : well_founded lt := well_founded.intro - (take n, nat.induction_on n + (λn, induction_on n (acc.intro zero (λ (y : nat) (H : y < 0), absurd H !not_lt_zero)) (λ (n : nat) (iH : acc lt n), @@ -15,3 +42,5 @@ well_founded.intro or.elim H₁ (assume Hlt : m < n, acc.inv iH Hlt) (assume Heq : m = n, Heq⁻¹ ▸ iH)))) + +end nat