refactor(library/algebra/group_bigops.lean,library/data/nat/bigops.lean): simplify naming scheme for bigops
This commit is contained in:
parent
6dc1cfca3c
commit
4764f6e8ec
2 changed files with 185 additions and 213 deletions
|
@ -3,43 +3,32 @@ Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
Finite products on a monoid, and finite sums on an additive monoid. These are called
|
||||
|
||||
algebra.list.prod
|
||||
algebra.finset.prod
|
||||
algebra.list.sum
|
||||
algebra.finset.sum
|
||||
|
||||
So when we open algebra we have list.prod etc., and when we migrate to nat, we have
|
||||
nat.list.prod etc.
|
||||
Finite products on a monoid, and finite sums on an additive monoid.
|
||||
|
||||
We have to be careful with dependencies. This theory imports files from finset and list, which
|
||||
import basic files from nat. Then nat imports this file to instantiate finite products and sums.
|
||||
-/
|
||||
import .group data.list.basic data.list.perm data.finset.basic
|
||||
open algebra function binary quot subtype
|
||||
open algebra function binary quot subtype list finset
|
||||
|
||||
namespace algebra
|
||||
variables {A B : Type}
|
||||
variable [deceqA : decidable_eq A]
|
||||
|
||||
/- list.prod -/
|
||||
/- Prodl: product indexed by a list -/
|
||||
|
||||
namespace list -- i.e. algebra.list
|
||||
open list -- i.e. ordinary lists
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
section monoid
|
||||
variables {B : Type} [mB : monoid B]
|
||||
section monoid
|
||||
variable [mB : monoid B]
|
||||
include mB
|
||||
|
||||
definition mulf (f : A → B) : B → A → B :=
|
||||
λ b a, b * f a
|
||||
|
||||
definition prod (l : list A) (f : A → B) : B :=
|
||||
definition Prodl (l : list A) (f : A → B) : B :=
|
||||
list.foldl (mulf f) 1 l
|
||||
|
||||
-- ∏ x ← l, f x
|
||||
notation `∏` binders `←` l, r:(scoped f, prod l f) := r
|
||||
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
|
||||
|
||||
private theorem foldl_const (f : A → B) :
|
||||
∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l
|
||||
|
@ -47,179 +36,159 @@ namespace list -- i.e. algebra.list
|
|||
| (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf,
|
||||
one_mul, mul.assoc]
|
||||
|
||||
theorem prod_nil (f : A → B) : prod [] f = 1 := rfl
|
||||
theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl
|
||||
|
||||
theorem prod_cons (f : A → B) (a : A) (l : list A) : prod (a::l) f = f a * prod l f :=
|
||||
by rewrite [↑prod, foldl_cons, foldl_const, ↑mulf, one_mul]
|
||||
theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
|
||||
by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul]
|
||||
|
||||
theorem prod_append :
|
||||
∀ (l₁ l₂ : list A) (f : A → B), prod (l₁++l₂) f = prod l₁ f * prod l₂ f
|
||||
| [] l₂ f := by rewrite [append_nil_left, prod_nil, one_mul]
|
||||
| (a::l) l₂ f := by rewrite [append_cons, *prod_cons, prod_append, mul.assoc]
|
||||
theorem Prodl_append :
|
||||
∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f
|
||||
| [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul]
|
||||
| (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc]
|
||||
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem prod_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l →
|
||||
prod (insert a l) f = prod l f :=
|
||||
section deceqA
|
||||
include deceqA
|
||||
|
||||
theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l →
|
||||
Prodl (insert a l) f = Prodl l f :=
|
||||
assume ainl, by rewrite [insert_eq_of_mem ainl]
|
||||
|
||||
theorem prod_insert_of_not_mem (f : A → B) {a : A} {l : list A} :
|
||||
a ∉ l → prod (insert a l) f = f a * prod l f :=
|
||||
assume nainl, by rewrite [insert_eq_of_not_mem nainl, prod_cons]
|
||||
theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} :
|
||||
a ∉ l → Prodl (insert a l) f = f a * Prodl l f :=
|
||||
assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons]
|
||||
|
||||
theorem prod_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
|
||||
prod (union l₁ l₂) f = prod l₁ f * prod l₂ f :=
|
||||
by rewrite [union_eq_append d, prod_append]
|
||||
end decidable_eq
|
||||
end monoid
|
||||
theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
|
||||
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f :=
|
||||
by rewrite [union_eq_append d, Prodl_append]
|
||||
end deceqA
|
||||
end monoid
|
||||
|
||||
section comm_monoid
|
||||
variables {B : Type} [cmB : comm_monoid B]
|
||||
include cmB
|
||||
|
||||
theorem prod_mul (l : list A) (f g : A → B) : prod l (λx, f x * g x) = prod l f * prod l g :=
|
||||
list.induction_on l
|
||||
(by rewrite [*prod_nil, mul_one])
|
||||
(take a l,
|
||||
assume IH,
|
||||
by rewrite [*prod_cons, IH, *mul.assoc, mul.left_comm (prod l f)])
|
||||
|
||||
end comm_monoid
|
||||
end list
|
||||
|
||||
/- finset.prod -/
|
||||
|
||||
namespace finset
|
||||
open finset
|
||||
variables {A B : Type}
|
||||
section comm_monoid
|
||||
variable [cmB : comm_monoid B]
|
||||
include cmB
|
||||
|
||||
theorem mulf_rcomm (f : A → B) : right_commutative (list.mulf f) :=
|
||||
theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g :=
|
||||
list.induction_on l
|
||||
(by rewrite [*Prodl_nil, mul_one])
|
||||
(take a l,
|
||||
assume IH,
|
||||
by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)])
|
||||
end comm_monoid
|
||||
|
||||
/- Prod: product indexed by a finset -/
|
||||
|
||||
section comm_monoid
|
||||
variable [cmB : comm_monoid B]
|
||||
include cmB
|
||||
|
||||
theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) :=
|
||||
right_commutative_compose_right (@has_mul.mul B cmB) f (@mul.right_comm B cmB)
|
||||
|
||||
section
|
||||
open perm
|
||||
theorem listprod_of_perm (f : A → B) {l₁ l₂ : list A} :
|
||||
l₁ ~ l₂ → list.prod l₁ f = list.prod l₂ f :=
|
||||
λ p, foldl_eq_of_perm (mulf_rcomm f) p 1
|
||||
end
|
||||
theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} :
|
||||
perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f :=
|
||||
λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1
|
||||
|
||||
definition prod (s : finset A) (f : A → B) : B :=
|
||||
definition Prod (s : finset A) (f : A → B) : B :=
|
||||
quot.lift_on s
|
||||
(λ l, list.prod (elt_of l) f)
|
||||
(λ l₁ l₂ p, listprod_of_perm f p)
|
||||
(λ l, Prodl (elt_of l) f)
|
||||
(λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p)
|
||||
|
||||
-- ∏ x ∈ s, f x
|
||||
notation `∏` binders `∈` s, r:(scoped f, prod s f) := r
|
||||
|
||||
theorem prod_empty (f : A → B) : prod ∅ f = 1 :=
|
||||
list.prod_nil f
|
||||
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
|
||||
Prodl_nil f
|
||||
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
|
||||
theorem prod_insert_of_mem (f : A → B) {a : A} {s : finset A} :
|
||||
a ∈ s → prod (insert a s) f = prod s f :=
|
||||
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} :
|
||||
a ∈ s → Prod (insert a s) f = Prod s f :=
|
||||
quot.induction_on s
|
||||
(λ l ainl, list.prod_insert_of_mem f ainl)
|
||||
(λ l ainl, Prodl_insert_of_mem f ainl)
|
||||
|
||||
theorem prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} :
|
||||
a ∉ s → prod (insert a s) f = f a * prod s f :=
|
||||
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} :
|
||||
a ∉ s → Prod (insert a s) f = f a * Prod s f :=
|
||||
quot.induction_on s
|
||||
(λ l nainl, list.prod_insert_of_not_mem f nainl)
|
||||
(λ l nainl, Prodl_insert_of_not_mem f nainl)
|
||||
|
||||
theorem prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
prod (s₁ ∪ s₂) f = prod s₁ f * prod s₂ f :=
|
||||
have H1 : disjoint s₁ s₂ → prod (s₁ ∪ s₂) f = prod s₁ f * prod s₂ f, from
|
||||
theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f :=
|
||||
have H1 : disjoint s₁ s₂ → Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f, from
|
||||
quot.induction_on₂ s₁ s₂
|
||||
(λ l₁ l₂ d, list.prod_union f d),
|
||||
(λ l₁ l₂ d, Prodl_union f d),
|
||||
H1 (disjoint_of_inter_empty disj)
|
||||
end decidable_eq
|
||||
|
||||
theorem prod_mul (s : finset A) (f g : A → B) : prod s (λx, f x * g x) = prod s f * prod s g :=
|
||||
quot.induction_on s (take u, !list.prod_mul)
|
||||
theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
|
||||
quot.induction_on s (take u, !Prodl_mul)
|
||||
end comm_monoid
|
||||
|
||||
end finset
|
||||
|
||||
/- list.sum -/
|
||||
|
||||
namespace list
|
||||
open list
|
||||
variable {A : Type}
|
||||
|
||||
section add_monoid
|
||||
variables {B : Type} [amB : add_monoid B]
|
||||
section add_monoid
|
||||
variable [amB : add_monoid B]
|
||||
include amB
|
||||
local attribute add_monoid.to_monoid [instance]
|
||||
|
||||
definition sum (l : list A) (f : A → B) : B := prod l f
|
||||
definition Suml (l : list A) (f : A → B) : B := Prodl l f
|
||||
|
||||
-- ∑ x ← l, f x
|
||||
notation `∑` binders `←` l, r:(scoped f, sum l f) := r
|
||||
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
|
||||
|
||||
theorem sum_nil (f : A → B) : sum [] f = 0 := prod_nil f
|
||||
theorem sum_cons (f : A → B) (a : A) (l : list A) : sum (a::l) f = f a + sum l f :=
|
||||
prod_cons f a l
|
||||
theorem sum_append (l₁ l₂ : list A) (f : A → B) : sum (l₁++l₂) f = sum l₁ f + sum l₂ f :=
|
||||
prod_append l₁ l₂ f
|
||||
theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f
|
||||
theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
|
||||
Prodl_cons f a l
|
||||
theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
|
||||
Prodl_append l₁ l₂ f
|
||||
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem sum_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) :
|
||||
sum (insert a l) f = sum l f := prod_insert_of_mem f H
|
||||
theorem sum_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) :
|
||||
sum (insert a l) f = f a + sum l f := prod_insert_of_not_mem f H
|
||||
theorem sum_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
|
||||
sum (union l₁ l₂) f = sum l₁ f + sum l₂ f := prod_union f d
|
||||
theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) :
|
||||
Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H
|
||||
theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) :
|
||||
Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H
|
||||
theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
|
||||
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d
|
||||
end decidable_eq
|
||||
end add_monoid
|
||||
end add_monoid
|
||||
|
||||
section add_comm_monoid
|
||||
variables {B : Type} [acmB : add_comm_monoid B]
|
||||
section add_comm_monoid
|
||||
variable [acmB : add_comm_monoid B]
|
||||
include acmB
|
||||
local attribute add_comm_monoid.to_comm_monoid [instance]
|
||||
|
||||
theorem sum_add (l : list A) (f g : A → B) : sum l (λx, f x + g x) = sum l f + sum l g :=
|
||||
prod_mul l f g
|
||||
end add_comm_monoid
|
||||
end list
|
||||
theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
|
||||
Prodl_mul l f g
|
||||
end add_comm_monoid
|
||||
|
||||
/- finset.sum -/
|
||||
/- Sum -/
|
||||
|
||||
namespace finset
|
||||
open finset
|
||||
variable {A : Type}
|
||||
|
||||
section add_comm_monoid
|
||||
variables {B : Type} [acmB : add_comm_monoid B]
|
||||
section add_comm_monoid
|
||||
variable [acmB : add_comm_monoid B]
|
||||
include acmB
|
||||
local attribute add_comm_monoid.to_comm_monoid [instance]
|
||||
|
||||
definition sum (s : finset A) (f : A → B) : B := prod s f
|
||||
definition Sum (s : finset A) (f : A → B) : B := Prod s f
|
||||
|
||||
-- ∑ x ∈ s, f x
|
||||
notation `∑` binders `∈` s, r:(scoped f, sum s f) := r
|
||||
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
|
||||
|
||||
theorem sum_empty (f : A → B) : sum ∅ f = 0 := prod_empty f
|
||||
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
|
||||
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) :
|
||||
sum (insert a s) f = sum s f := prod_insert_of_mem f H
|
||||
theorem sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) :
|
||||
sum (insert a s) f = f a + sum s f := prod_insert_of_not_mem f H
|
||||
theorem sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
sum (s₁ ∪ s₂) f = sum s₁ f + sum s₂ f := prod_union f disj
|
||||
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) :
|
||||
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
|
||||
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) :
|
||||
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
|
||||
theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
|
||||
end decidable_eq
|
||||
|
||||
theorem sum_add (s : finset A) (f g : A → B) :
|
||||
sum s (λx, f x + g x) = sum s f + sum s g := prod_mul s f g
|
||||
end add_comm_monoid
|
||||
end finset
|
||||
theorem Sum_add (s : finset A) (f g : A → B) :
|
||||
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
|
||||
end add_comm_monoid
|
||||
|
||||
end algebra
|
||||
|
|
|
@ -6,95 +6,98 @@ Author: Jeremy Avigad
|
|||
Finite products and sums on the natural numbers.
|
||||
-/
|
||||
import data.nat.basic data.nat.order algebra.group_bigops
|
||||
open list
|
||||
open list finset
|
||||
|
||||
namespace nat
|
||||
open [classes] algebra
|
||||
local attribute nat.comm_semiring [instance]
|
||||
variable {A : Type}
|
||||
open [classes] algebra
|
||||
local attribute nat.comm_semiring [instance]
|
||||
variables {A : Type} [deceqA : decidable_eq A]
|
||||
|
||||
/- list.prod and list.sum -/
|
||||
/- Prodl -/
|
||||
|
||||
definition list.prod (l : list A) (f : A → nat) : nat := algebra.list.prod l f
|
||||
notation `∏` binders `←` l, r:(scoped f, list.prod l f) := r
|
||||
definition list.sum (l : list A) (f : A → nat) : nat := algebra.list.sum l f
|
||||
notation `∑` binders `←` l, r:(scoped f, list.sum l f) := r
|
||||
definition Prodl (l : list A) (f : A → nat) : nat := algebra.Prodl l f
|
||||
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
|
||||
|
||||
namespace list -- i.e. nat.list
|
||||
open list -- i.e. ordinary lists
|
||||
theorem Prodl_nil (f : A → nat) : Prodl [] f = 1 := algebra.Prodl_nil f
|
||||
theorem Prodl_cons (f : A → nat) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
|
||||
algebra.Prodl_cons f a l
|
||||
theorem Prodl_append (l₁ l₂ : list A) (f : A → nat) : Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f :=
|
||||
algebra.Prodl_append l₁ l₂ f
|
||||
|
||||
theorem prod_nil (f : A → nat) : prod [] f = 1 := algebra.list.prod_nil f
|
||||
theorem prod_cons (f : A → nat) (a : A) (l : list A) : prod (a::l) f = f a * prod l f :=
|
||||
algebra.list.prod_cons f a l
|
||||
theorem prod_append (l₁ l₂ : list A) (f : A → nat) : prod (l₁++l₂) f = prod l₁ f * prod l₂ f :=
|
||||
algebra.list.prod_append l₁ l₂ f
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem prod_insert_of_mem (f : A → nat) {a : A} {l : list A} (H : a ∈ l) :
|
||||
prod (insert a l) f = prod l f := algebra.list.prod_insert_of_mem f H
|
||||
theorem prod_insert_of_not_mem (f : A → nat) {a : A} {l : list A} (H : a ∉ l) :
|
||||
prod (insert a l) f = f a * prod l f := algebra.list.prod_insert_of_not_mem f H
|
||||
theorem prod_union {l₁ l₂ : list A} (f : A → nat) (d : disjoint l₁ l₂) :
|
||||
prod (union l₁ l₂) f = prod l₁ f * prod l₂ f := algebra.list.prod_union f d
|
||||
end decidable_eq
|
||||
theorem prod_mul (l : list A) (f g : A → nat) :
|
||||
prod l (λx, f x * g x) = prod l f * prod l g := algebra.list.prod_mul l f g
|
||||
section deceqA
|
||||
include deceqA
|
||||
theorem Prodl_insert_of_mem (f : A → nat) {a : A} {l : list A} (H : a ∈ l) :
|
||||
Prodl (insert a l) f = Prodl l f := algebra.Prodl_insert_of_mem f H
|
||||
theorem Prodl_insert_of_not_mem (f : A → nat) {a : A} {l : list A} (H : a ∉ l) :
|
||||
Prodl (insert a l) f = f a * Prodl l f := algebra.Prodl_insert_of_not_mem f H
|
||||
theorem Prodl_union {l₁ l₂ : list A} (f : A → nat) (d : disjoint l₁ l₂) :
|
||||
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_union f d
|
||||
end deceqA
|
||||
|
||||
theorem sum_nil (f : A → nat) : sum [] f = 0 := algebra.list.sum_nil f
|
||||
theorem sum_cons (f : A → nat) (a : A) (l : list A) : sum (a::l) f = f a + sum l f :=
|
||||
algebra.list.sum_cons f a l
|
||||
theorem sum_append (l₁ l₂ : list A) (f : A → nat) : sum (l₁++l₂) f = sum l₁ f + sum l₂ f :=
|
||||
algebra.list.sum_append l₁ l₂ f
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem sum_insert_of_mem (f : A → nat) {a : A} {l : list A} (H : a ∈ l) :
|
||||
sum (insert a l) f = sum l f := algebra.list.sum_insert_of_mem f H
|
||||
theorem sum_insert_of_not_mem (f : A → nat) {a : A} {l : list A} (H : a ∉ l) :
|
||||
sum (insert a l) f = f a + sum l f := algebra.list.sum_insert_of_not_mem f H
|
||||
theorem sum_union {l₁ l₂ : list A} (f : A → nat) (d : disjoint l₁ l₂) :
|
||||
sum (union l₁ l₂) f = sum l₁ f + sum l₂ f := algebra.list.sum_union f d
|
||||
end decidable_eq
|
||||
theorem sum_add (l : list A) (f g : A → nat) : sum l (λx, f x + g x) = sum l f + sum l g :=
|
||||
algebra.list.sum_add l f g
|
||||
end list
|
||||
theorem Prodl_mul (l : list A) (f g : A → nat) :
|
||||
Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := algebra.Prodl_mul l f g
|
||||
|
||||
/- finset.prod and finset.sum -/
|
||||
/- Prod -/
|
||||
|
||||
definition finset.prod (s : finset A) (f : A → nat) : nat := algebra.finset.prod s f
|
||||
notation `∏` binders `∈` s, r:(scoped f, finset.prod s f) := r
|
||||
definition finset.sum (s : finset A) (f : A → nat) : nat := algebra.finset.sum s f
|
||||
notation `∑` binders `∈` s, r:(scoped f, finset.sum s f) := r
|
||||
definition Prod (s : finset A) (f : A → nat) : nat := algebra.Prod s f
|
||||
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
|
||||
|
||||
namespace finset
|
||||
open finset
|
||||
theorem prod_empty (f : A → nat) : finset.prod ∅ f = 1 := algebra.finset.prod_empty f
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem prod_insert_of_mem (f : A → nat) {a : A} {s : finset A} (H : a ∈ s) :
|
||||
prod (insert a s) f = prod s f := algebra.finset.prod_insert_of_mem f H
|
||||
theorem prod_insert_of_not_mem (f : A → nat) {a : A} {s : finset A} (H : a ∉ s) :
|
||||
prod (insert a s) f = f a * prod s f := algebra.finset.prod_insert_of_not_mem f H
|
||||
theorem prod_union (f : A → nat) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
prod (s₁ ∪ s₂) f = prod s₁ f * prod s₂ f := algebra.finset.prod_union f disj
|
||||
end decidable_eq
|
||||
theorem prod_mul (s : finset A) (f g : A → nat) : prod s (λx, f x * g x) = prod s f * prod s g :=
|
||||
algebra.finset.prod_mul s f g
|
||||
theorem Prod_empty (f : A → nat) : Prod ∅ f = 1 := algebra.Prod_empty f
|
||||
|
||||
section deceqA
|
||||
include deceqA
|
||||
theorem Prod_insert_of_mem (f : A → nat) {a : A} {s : finset A} (H : a ∈ s) :
|
||||
Prod (insert a s) f = Prod s f := algebra.Prod_insert_of_mem f H
|
||||
theorem Prod_insert_of_not_mem (f : A → nat) {a : A} {s : finset A} (H : a ∉ s) :
|
||||
Prod (insert a s) f = f a * Prod s f := algebra.Prod_insert_of_not_mem f H
|
||||
theorem Prod_union (f : A → nat) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := algebra.Prod_union f disj
|
||||
end deceqA
|
||||
|
||||
theorem Prod_mul (s : finset A) (f g : A → nat) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
|
||||
algebra.Prod_mul s f g
|
||||
|
||||
/- Suml -/
|
||||
|
||||
definition Suml (l : list A) (f : A → nat) : nat := algebra.Suml l f
|
||||
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
|
||||
|
||||
theorem Suml_nil (f : A → nat) : Suml [] f = 0 := algebra.Suml_nil f
|
||||
theorem Suml_cons (f : A → nat) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
|
||||
algebra.Suml_cons f a l
|
||||
theorem Suml_append (l₁ l₂ : list A) (f : A → nat) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
|
||||
algebra.Suml_append l₁ l₂ f
|
||||
|
||||
section deceqA
|
||||
include deceqA
|
||||
theorem Suml_insert_of_mem (f : A → nat) {a : A} {l : list A} (H : a ∈ l) :
|
||||
Suml (insert a l) f = Suml l f := algebra.Suml_insert_of_mem f H
|
||||
theorem Suml_insert_of_not_mem (f : A → nat) {a : A} {l : list A} (H : a ∉ l) :
|
||||
Suml (insert a l) f = f a + Suml l f := algebra.Suml_insert_of_not_mem f H
|
||||
theorem Suml_union {l₁ l₂ : list A} (f : A → nat) (d : disjoint l₁ l₂) :
|
||||
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_union f d
|
||||
end deceqA
|
||||
|
||||
theorem Suml_add (l : list A) (f g : A → nat) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
|
||||
algebra.Suml_add l f g
|
||||
|
||||
/- Sum -/
|
||||
|
||||
definition Sum (s : finset A) (f : A → nat) : nat := algebra.Sum s f
|
||||
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
|
||||
|
||||
theorem Sum_empty (f : A → nat) : Sum ∅ f = 0 := algebra.Sum_empty f
|
||||
section deceqA
|
||||
include deceqA
|
||||
theorem Sum_insert_of_mem (f : A → nat) {a : A} {s : finset A} (H : a ∈ s) :
|
||||
Sum (insert a s) f = Sum s f := algebra.Sum_insert_of_mem f H
|
||||
theorem Sum_insert_of_not_mem (f : A → nat) {a : A} {s : finset A} (H : a ∉ s) :
|
||||
Sum (insert a s) f = f a + Sum s f := algebra.Sum_insert_of_not_mem f H
|
||||
theorem Sum_union (f : A → nat) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := algebra.Sum_union f disj
|
||||
end deceqA
|
||||
|
||||
theorem Sum_add (s : finset A) (f g : A → nat) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
|
||||
algebra.Sum_add s f g
|
||||
|
||||
theorem sum_empty (f : A → nat) : finset.sum ∅ f = 0 := algebra.finset.sum_empty f
|
||||
section decidable_eq
|
||||
variable [H : decidable_eq A]
|
||||
include H
|
||||
theorem sum_insert_of_mem (f : A → nat) {a : A} {s : finset A} (H : a ∈ s) :
|
||||
sum (insert a s) f = sum s f := algebra.finset.sum_insert_of_mem f H
|
||||
theorem sum_insert_of_not_mem (f : A → nat) {a : A} {s : finset A} (H : a ∉ s) :
|
||||
sum (insert a s) f = f a + sum s f := algebra.finset.sum_insert_of_not_mem f H
|
||||
theorem sum_union (f : A → nat) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
|
||||
sum (s₁ ∪ s₂) f = sum s₁ f + sum s₂ f := algebra.finset.sum_union f disj
|
||||
end decidable_eq
|
||||
theorem sum_add (s : finset A) (f g : A → nat) : sum s (λx, f x + g x) = sum s f + sum s g :=
|
||||
algebra.finset.sum_add s f g
|
||||
end finset
|
||||
end nat
|
||||
|
|
Loading…
Reference in a new issue