feat(library/hott) add: if precompositions with f are equivalences, then f is
This commit is contained in:
parent
b6722a5d33
commit
479eabb416
1 changed files with 53 additions and 3 deletions
|
@ -2,7 +2,7 @@
|
||||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
-- Author: Jeremy Avigad, Jakob von Raumer
|
-- Author: Jeremy Avigad, Jakob von Raumer
|
||||||
-- Ported from Coq HoTT
|
-- Ported from Coq HoTT
|
||||||
import .path
|
import .path .trunc
|
||||||
open path function
|
open path function
|
||||||
|
|
||||||
-- Equivalences
|
-- Equivalences
|
||||||
|
@ -186,7 +186,8 @@ namespace IsEquiv
|
||||||
definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) :=
|
definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) :=
|
||||||
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a))
|
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a))
|
||||||
|
|
||||||
definition transport (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
|
--Transporting is an equivalence
|
||||||
|
definition transport [instance] (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
|
||||||
IsEquiv_mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
|
IsEquiv_mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
|
||||||
|
|
||||||
--Rewrite rules
|
--Rewrite rules
|
||||||
|
@ -205,6 +206,40 @@ namespace IsEquiv
|
||||||
definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x :=
|
definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x :=
|
||||||
(moveR_V (p⁻¹))⁻¹
|
(moveR_V (p⁻¹))⁻¹
|
||||||
|
|
||||||
|
definition contr (HA: Contr A) : (Contr B) :=
|
||||||
|
Contr.Contr_mk (f (center HA)) (λb, moveR_M (contr HA (inv Hf b)))
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
--If pre- or post-composing with a function is always an equivalence,
|
||||||
|
--then that function is also an equivalence. It's convenient to know
|
||||||
|
--that we only need to assume the equivalence when the other type is
|
||||||
|
--the domain or the codomain.
|
||||||
|
section
|
||||||
|
|
||||||
|
definition precomp (C : Type) (h : B → C) : A → C := h ∘ f
|
||||||
|
|
||||||
|
definition inv_precomp (C D : Type) (Ceq : IsEquiv (precomp C))
|
||||||
|
(Deq : IsEquiv (@precomp A B f D)) (k : C → D) (h : A → C) :
|
||||||
|
k ∘ (inv Ceq) h ≈ (inv Deq) (k ∘ h) :=
|
||||||
|
have eq1 : (inv Deq) (k ∘ h) ≈ k ∘ ((inv Ceq) h),
|
||||||
|
from calc (inv Deq) (k ∘ h) ≈ (inv Deq) (k ∘ (precomp C ((inv Ceq) h))) : retr Ceq h
|
||||||
|
... ≈ k ∘ ((inv Ceq) h) : !sect,
|
||||||
|
eq1⁻¹
|
||||||
|
|
||||||
|
definition isequiv_precompose (Aeq : IsEquiv (@precomp A B f A))
|
||||||
|
(Beq : IsEquiv (@precomp A B f B)) : (IsEquiv f) :=
|
||||||
|
let sect' : Sect ((inv Aeq) id) f := (λx,
|
||||||
|
calc f (inv Aeq id x) ≈ (f ∘ (inv Aeq) id) x : idp
|
||||||
|
... ≈ (inv Beq) (f ∘ id) x : apD10 (!inv_precomp)
|
||||||
|
... ≈ (inv Beq) (@precomp A B f B id) x : idp
|
||||||
|
... ≈ x : apD10 (sect Beq id))
|
||||||
|
in
|
||||||
|
let retr' : Sect f ((inv Aeq) id) := (λx,
|
||||||
|
calc inv Aeq id (f x) ≈ @precomp A B f A ((inv Aeq) id) x : idp
|
||||||
|
... ≈ x : apD10 (retr Aeq id)) in
|
||||||
|
adjointify f ((inv Aeq) id) sect' retr'
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
end IsEquiv
|
end IsEquiv
|
||||||
|
@ -212,7 +247,7 @@ end IsEquiv
|
||||||
namespace Equiv
|
namespace Equiv
|
||||||
variables {A B C : Type} (eqf : A ≃ B)
|
variables {A B C : Type} (eqf : A ≃ B)
|
||||||
|
|
||||||
theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
||||||
|
|
||||||
theorem compose (eqg: B ≃ C) : A ≃ C :=
|
theorem compose (eqg: B ≃ C) : A ≃ C :=
|
||||||
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
|
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
|
||||||
|
@ -235,4 +270,19 @@ namespace Equiv
|
||||||
theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) :=
|
theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) :=
|
||||||
Equiv_mk (transport P p) (IsEquiv.transport P p)
|
Equiv_mk (transport P p) (IsEquiv.transport P p)
|
||||||
|
|
||||||
|
theorem contr_closed (HA: Contr A) : (Contr B) :=
|
||||||
|
@IsEquiv.contr A B (equiv_fun eqf) (equiv_isequiv eqf) HA
|
||||||
|
|
||||||
|
end Equiv
|
||||||
|
|
||||||
|
namespace Equiv
|
||||||
|
variables {A B : Type} {HA : Contr A} {HB : Contr B}
|
||||||
|
|
||||||
|
--Each two contractible types are equivalent.
|
||||||
|
definition contr_contr : A ≃ B :=
|
||||||
|
Equiv_mk
|
||||||
|
(λa, center HB)
|
||||||
|
(IsEquiv.adjointify (λa, center HB) (λb, center HA)
|
||||||
|
(contr HB) (contr HA))
|
||||||
|
|
||||||
end Equiv
|
end Equiv
|
||||||
|
|
Loading…
Add table
Reference in a new issue