feat(builtin/Nat): multiplication axioms and theorems
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
d72b165db4
commit
49425f1a5b
8 changed files with 164 additions and 35 deletions
|
@ -29,11 +29,15 @@ Infix 50 > : gt.
|
|||
Definition id (a : Nat) := a.
|
||||
Notation 55 | _ | : id.
|
||||
|
||||
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
|
||||
Axiom PlusZero (a : Nat) : a + 0 = a.
|
||||
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
||||
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
|
||||
Axiom MulZero (a : Nat) : a * 0 = 0.
|
||||
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
||||
Axiom Induction {P : Nat → Bool} (Hb : P 0) (Hi : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
||||
|
||||
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
||||
|
||||
Theorem ZeroPlus (a : Nat) : 0 + a = a
|
||||
:= Induction (show 0 + 0 = 0, Trivial)
|
||||
(λ (n : Nat) (Hi : 0 + n = n),
|
||||
|
@ -76,7 +80,97 @@ Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
|||
in show (n + 1) + (b + c) = ((n + 1) + b) + c, Trans L2 L6)
|
||||
a.
|
||||
|
||||
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
||||
Theorem ZeroMul (a : Nat) : 0 * a = 0
|
||||
:= Induction (show 0 * 0 = 0, Trivial)
|
||||
(λ (n : Nat) (Hi : 0 * n = 0),
|
||||
let L1 : 0 * (n + 1) = (0 * n) + 0 := MulSucc 0 n,
|
||||
L2 : 0 * (n + 1) = 0 + 0 := Subst L1 Hi
|
||||
in show 0 * (n + 1) = 0, L2)
|
||||
a.
|
||||
|
||||
Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b
|
||||
:= Induction (show (a + 1) * 0 = a * 0 + 0,
|
||||
Trans (MulZero (a + 1)) (Symm (Subst (PlusZero (a * 0)) (MulZero a))))
|
||||
(λ (n : Nat) (Hi : (a + 1) * n = a * n + n),
|
||||
let L1 : (a + 1) * (n + 1) = (a + 1) * n + (a + 1) := MulSucc (a + 1) n,
|
||||
L2 : (a + 1) * (n + 1) = a * n + n + (a + 1) := Subst L1 Hi,
|
||||
L3 : a * n + n + (a + 1) = a * n + n + a + 1 := PlusAssoc (a * n + n) a 1,
|
||||
L4 : a * n + n + a = a * n + (n + a) := Symm (PlusAssoc (a * n) n a),
|
||||
L5 : a * n + n + (a + 1) = a * n + (n + a) + 1 := Subst L3 L4,
|
||||
L6 : a * n + n + (a + 1) = a * n + (a + n) + 1 := Subst L5 (PlusComm n a),
|
||||
L7 : a * n + (a + n) = a * n + a + n := PlusAssoc (a * n) a n,
|
||||
L8 : a * n + n + (a + 1) = a * n + a + n + 1 := Subst L6 L7,
|
||||
L9 : a * n + a = a * (n + 1) := Symm (MulSucc a n),
|
||||
L10 : a * n + n + (a + 1) = a * (n + 1) + n + 1 := Subst L8 L9,
|
||||
L11 : a * (n + 1) + n + 1 = a * (n + 1) + (n + 1) := Symm (PlusAssoc (a * (n + 1)) n 1)
|
||||
in show (a + 1) * (n + 1) = a * (n + 1) + (n + 1),
|
||||
Trans (Trans L2 L10) L11)
|
||||
b.
|
||||
|
||||
Theorem OneMul (a : Nat) : 1 * a = a
|
||||
:= Induction (show 1 * 0 = 0, Trivial)
|
||||
(λ (n : Nat) (Hi : 1 * n = n),
|
||||
let L1 : 1 * (n + 1) = 1 * n + 1 := MulSucc 1 n
|
||||
in show 1 * (n + 1) = n + 1, Subst L1 Hi)
|
||||
a.
|
||||
|
||||
Theorem MulOne (a : Nat) : a * 1 = a
|
||||
:= Induction (show 0 * 1 = 0, Trivial)
|
||||
(λ (n : Nat) (Hi : n * 1 = n),
|
||||
let L1 : (n + 1) * 1 = n * 1 + 1 := SuccMul n 1
|
||||
in show (n + 1) * 1 = n + 1, Subst L1 Hi)
|
||||
a.
|
||||
|
||||
Theorem MulComm (a b : Nat) : a * b = b * a
|
||||
:= Induction (show a * 0 = 0 * a, Trans (MulZero a) (Symm (ZeroMul a)))
|
||||
(λ (n : Nat) (Hi : a * n = n * a),
|
||||
let L1 : a * (n + 1) = a * n + a := MulSucc a n,
|
||||
L2 : (n + 1) * a = n * a + a := SuccMul n a,
|
||||
L3 : (n + 1) * a = a * n + a := Subst L2 (Symm Hi)
|
||||
in show a * (n + 1) = (n + 1) * a, Trans L1 (Symm L3))
|
||||
b.
|
||||
|
||||
|
||||
Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
||||
:= Induction (let L1 : 0 * (b + c) = 0 := ZeroMul (b + c),
|
||||
L2 : 0 * b + 0 * c = 0 + 0 := Subst (Subst (Refl (0 * b + 0 * c)) (ZeroMul b)) (ZeroMul c),
|
||||
L3 : 0 + 0 = 0 := Trivial
|
||||
in show 0 * (b + c) = 0 * b + 0 * c, Trans L1 (Symm (Trans L2 L3)))
|
||||
(λ (n : Nat) (Hi : n * (b + c) = n * b + n * c),
|
||||
let L1 : (n + 1) * (b + c) = n * (b + c) + (b + c) := SuccMul n (b + c),
|
||||
L2 : (n + 1) * (b + c) = n * b + n * c + (b + c) := Subst L1 Hi,
|
||||
L3 : n * b + n * c + (b + c) = n * b + n * c + b + c := PlusAssoc (n * b + n * c) b c,
|
||||
L4 : n * b + n * c + b = n * b + (n * c + b) := Symm (PlusAssoc (n * b) (n * c) b),
|
||||
L5 : n * b + n * c + b = n * b + (b + n * c) := Subst L4 (PlusComm (n * c) b),
|
||||
L6 : n * b + (b + n * c) = n * b + b + n * c := PlusAssoc (n * b) b (n * c),
|
||||
L7 : n * b + (b + n * c) = (n + 1) * b + n * c := Subst L6 (Symm (SuccMul n b)),
|
||||
L8 : n * b + n * c + b = (n + 1) * b + n * c := Trans L5 L7,
|
||||
L9 : n * b + n * c + (b + c) = (n + 1) * b + n * c + c := Subst L3 L8,
|
||||
L10 : (n + 1) * b + n * c + c = (n + 1) * b + (n * c + c) := Symm (PlusAssoc ((n + 1) * b) (n * c) c),
|
||||
L11 : (n + 1) * b + n * c + c = (n + 1) * b + (n + 1) * c := Subst L10 (Symm (SuccMul n c)),
|
||||
L12 : n * b + n * c + (b + c) = (n + 1) * b + (n + 1) * c := Trans L9 L11
|
||||
in show (n + 1) * (b + c) = (n + 1) * b + (n + 1) * c,
|
||||
Trans L2 L12)
|
||||
a.
|
||||
|
||||
Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
|
||||
:= let L1 : (a + b) * c = c * (a + b) := MulComm (a + b) c,
|
||||
L2 : c * (a + b) = c * a + c * b := Distribute c a b,
|
||||
L3 : (a + b) * c = c * a + c * b := Trans L1 L2
|
||||
in Subst (Subst L3 (MulComm c a)) (MulComm c b).
|
||||
|
||||
Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
|
||||
:= Induction (let L1 : 0 * (b * c) = 0 := ZeroMul (b * c),
|
||||
L2 : 0 * b * c = 0 * c := Subst (Refl (0 * b * c)) (ZeroMul b),
|
||||
L3 : 0 * c = 0 := ZeroMul c
|
||||
in show 0 * (b * c) = 0 * b * c, Trans L1 (Symm (Trans L2 L3)))
|
||||
(λ (n : Nat) (Hi : n * (b * c) = n * b * c),
|
||||
let L1 : (n + 1) * (b * c) = n * (b * c) + (b * c) := SuccMul n (b * c),
|
||||
L2 : (n + 1) * (b * c) = n * b * c + (b * c) := Subst L1 Hi,
|
||||
L3 : n * b * c + (b * c) = (n * b + b) * c := Symm (Distribute2 (n * b) b c),
|
||||
L4 : n * b * c + (b * c) = (n + 1) * b * c := Subst L3 (Symm (SuccMul n b))
|
||||
in show (n + 1) * (b * c) = (n + 1) * b * c, Trans L2 L4)
|
||||
a.
|
||||
|
||||
SetOpaque ge true.
|
||||
SetOpaque lt true.
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -1,5 +1,5 @@
|
|||
add_library(library kernel_bindings.cpp deep_copy.cpp max_sharing.cpp
|
||||
context_to_lambda.cpp placeholder.cpp expr_lt.cpp substitution.cpp
|
||||
fo_unify.cpp bin_op.cpp)
|
||||
fo_unify.cpp bin_op.cpp eq_heq.cpp)
|
||||
|
||||
target_link_libraries(library ${LEAN_LIBS})
|
||||
|
|
|
@ -20,6 +20,7 @@ Author: Leonardo de Moura
|
|||
#include "kernel/builtin.h"
|
||||
#include "kernel/type_checker.h"
|
||||
#include "kernel/update_expr.h"
|
||||
#include "library/eq_heq.h"
|
||||
#include "library/elaborator/elaborator.h"
|
||||
#include "library/elaborator/elaborator_justification.h"
|
||||
|
||||
|
@ -1318,6 +1319,36 @@ class elaborator::imp {
|
|||
r = process_metavar(c, b, a, false);
|
||||
if (r != Continue) { return r == Processed; }
|
||||
|
||||
if (is_eq_heq(a) && is_eq_heq(b)) {
|
||||
expr_pair p1 = eq_heq_args(a);
|
||||
expr_pair p2 = eq_heq_args(b);
|
||||
justification new_jst(new destruct_justification(c));
|
||||
push_new_eq_constraint(ctx, p1.first, p2.first, new_jst);
|
||||
push_new_eq_constraint(ctx, p1.second, p2.second, new_jst);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a.kind() == b.kind()) {
|
||||
switch (a.kind()) {
|
||||
case expr_kind::Pi: {
|
||||
justification new_jst(new destruct_justification(c));
|
||||
push_new_eq_constraint(ctx, abst_domain(a), abst_domain(b), new_jst);
|
||||
context new_ctx = extend(ctx, abst_name(a), abst_domain(a));
|
||||
push_new_constraint(eq, new_ctx, abst_body(a), abst_body(b), new_jst);
|
||||
return true;
|
||||
}
|
||||
case expr_kind::Lambda: {
|
||||
justification new_jst(new destruct_justification(c));
|
||||
push_new_eq_constraint(ctx, abst_domain(a), abst_domain(b), new_jst);
|
||||
context new_ctx = extend(ctx, abst_name(a), abst_domain(a));
|
||||
push_new_eq_constraint(new_ctx, abst_body(a), abst_body(b), new_jst);
|
||||
return true;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_meta_app(a) && !is_meta_app(b) && normalize_head(a, b, c)) { return true; }
|
||||
|
||||
if (!eq) {
|
||||
|
@ -1361,26 +1392,6 @@ class elaborator::imp {
|
|||
m_conflict = justification(new unification_failure_justification(c));
|
||||
return false;
|
||||
}
|
||||
case expr_kind::Eq: {
|
||||
justification new_jst(new destruct_justification(c));
|
||||
push_new_eq_constraint(ctx, eq_lhs(a), eq_lhs(b), new_jst);
|
||||
push_new_eq_constraint(ctx, eq_rhs(a), eq_rhs(b), new_jst);
|
||||
return true;
|
||||
}
|
||||
case expr_kind::Pi: {
|
||||
justification new_jst(new destruct_justification(c));
|
||||
push_new_eq_constraint(ctx, abst_domain(a), abst_domain(b), new_jst);
|
||||
context new_ctx = extend(ctx, abst_name(a), abst_domain(a));
|
||||
push_new_constraint(eq, new_ctx, abst_body(a), abst_body(b), new_jst);
|
||||
return true;
|
||||
}
|
||||
case expr_kind::Lambda: {
|
||||
justification new_jst(new destruct_justification(c));
|
||||
push_new_eq_constraint(ctx, abst_domain(a), abst_domain(b), new_jst);
|
||||
context new_ctx = extend(ctx, abst_name(a), abst_domain(a));
|
||||
push_new_eq_constraint(new_ctx, abst_body(a), abst_body(b), new_jst);
|
||||
return true;
|
||||
}
|
||||
case expr_kind::App:
|
||||
if (!is_meta_app(a) && !is_meta_app(b)) {
|
||||
if (num_args(a) == num_args(b)) {
|
||||
|
|
22
src/library/eq_heq.cpp
Normal file
22
src/library/eq_heq.cpp
Normal file
|
@ -0,0 +1,22 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
*/
|
||||
#include "library/expr_pair.h"
|
||||
#include "kernel/builtin.h"
|
||||
|
||||
namespace lean {
|
||||
bool is_eq_heq(expr const & e) {
|
||||
return is_eq(e) || is_homo_eq(e);
|
||||
}
|
||||
|
||||
expr_pair eq_heq_args(expr const & e) {
|
||||
lean_assert(is_eq(e) || is_homo_eq(e));
|
||||
if (is_eq(e))
|
||||
return expr_pair(eq_lhs(e), eq_rhs(e));
|
||||
else
|
||||
return expr_pair(arg(e, 2), arg(e, 3));
|
||||
}
|
||||
}
|
13
src/library/eq_heq.h
Normal file
13
src/library/eq_heq.h
Normal file
|
@ -0,0 +1,13 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
*/
|
||||
#pragma once
|
||||
#include "library/expr_pair.h"
|
||||
|
||||
namespace lean {
|
||||
bool is_eq_heq(expr const & e);
|
||||
expr_pair eq_heq_args(expr const & e);
|
||||
}
|
|
@ -9,6 +9,7 @@ Author: Leonardo de Moura
|
|||
#include "library/fo_unify.h"
|
||||
#include "library/expr_pair.h"
|
||||
#include "library/kernel_bindings.h"
|
||||
#include "library/eq_heq.h"
|
||||
|
||||
namespace lean {
|
||||
static void assign(substitution & s, expr const & mvar, expr const & e) {
|
||||
|
@ -20,18 +21,6 @@ static bool is_metavar_wo_local_context(expr const & e) {
|
|||
return is_metavar(e) && !metavar_lctx(e);
|
||||
}
|
||||
|
||||
static bool is_eq_heq(expr const & e) {
|
||||
return is_eq(e) || is_homo_eq(e);
|
||||
}
|
||||
|
||||
static expr_pair eq_heq_args(expr const & e) {
|
||||
lean_assert(is_eq(e) || is_homo_eq(e));
|
||||
if (is_eq(e))
|
||||
return expr_pair(eq_lhs(e), eq_rhs(e));
|
||||
else
|
||||
return expr_pair(arg(e, 2), arg(e, 3));
|
||||
}
|
||||
|
||||
optional<substitution> fo_unify(expr e1, expr e2) {
|
||||
substitution s;
|
||||
unsigned i1, i2;
|
||||
|
|
Loading…
Reference in a new issue