feat(types): incorporate pathovers in the files of the types folder

Conflicts:
	hott/cubical/pathover.hlean
This commit is contained in:
Floris van Doorn 2015-05-22 04:35:44 -04:00 committed by Leonardo de Moura
parent 0b12d51b25
commit 4a29f4bdd4
13 changed files with 260 additions and 212 deletions

View file

@ -70,9 +70,8 @@ namespace nat_trans
intro η, apply nat_trans_eq, intro a, apply idp, intro η, apply nat_trans_eq, intro a, apply idp,
intro S, intro S,
fapply sigma_eq, fapply sigma_eq,
apply eq_of_homotopy, intro a, { apply eq_of_homotopy, intro a, apply idp},
apply idp, { apply is_hprop.elimo}
apply is_hprop.elim,
end end
definition is_hset_nat_trans [instance] : is_hset (F ⟹ G) := definition is_hset_nat_trans [instance] : is_hset (F ⟹ G) :=

View file

@ -41,7 +41,7 @@ namespace algebra
cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity
end end
definition group_pathover {G : group A} {H : group B} (f : A ≃ B) : (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H := definition group_pathover {G : group A} {H : group B} {f : A ≃ B} : (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H :=
begin begin
revert H, revert H,
eapply (rec_on_ua_idp' f), eapply (rec_on_ua_idp' f),

View file

@ -7,6 +7,5 @@ The core of the HoTT library
-/ -/
import types import types
import cubical.square
import hit.circle import hit.circle
import algebra.hott import algebra.hott

View file

@ -261,6 +261,11 @@ namespace equiv
protected definition trans [trans] (f : A ≃ B) (g: B ≃ C) : A ≃ C := protected definition trans [trans] (f : A ≃ B) (g: B ≃ C) : A ≃ C :=
equiv.mk (g ∘ f) !is_equiv_compose equiv.mk (g ∘ f) !is_equiv_compose
infixl `⬝e`:75 := equiv.trans
postfix [parsing-only] `⁻¹ᵉ`:(max + 1) := equiv.symm
-- notation for inverse which is not overloaded
abbreviation erfl [constructor] := @equiv.refl
definition equiv_of_eq_fn_of_equiv (f : A ≃ B) {f' : A → B} (Heq : f = f') : A ≃ B := definition equiv_of_eq_fn_of_equiv (f : A ≃ B) {f' : A → B} (Heq : f = f') : A ≃ B :=
equiv.mk f' (is_equiv_eq_closed Heq) equiv.mk f' (is_equiv_eq_closed Heq)
@ -287,11 +292,7 @@ namespace equiv
definition equiv_of_eq_of_equiv {A B C : Type} (p : A ≃ B) (q : B = C) : A ≃ C := q ▸ p definition equiv_of_eq_of_equiv {A B C : Type} (p : A ≃ B) (q : B = C) : A ≃ C := q ▸ p
namespace ops namespace ops
infixl `⬝e`:75 := equiv.trans
postfix `⁻¹` := equiv.symm -- overloaded notation for inverse postfix `⁻¹` := equiv.symm -- overloaded notation for inverse
postfix [parsing-only] `⁻¹ᵉ`:(max + 1) := equiv.symm
-- notation for inverse which is not overloaded
abbreviation erfl [constructor] := @equiv.refl
end ops end ops
end equiv end equiv

View file

@ -7,7 +7,7 @@ Theorems about W-types (well-founded trees)
-/ -/
import .sigma .pi import .sigma .pi
open eq sigma sigma.ops equiv is_equiv open eq equiv is_equiv sigma sigma.ops
inductive Wtype.{l k} {A : Type.{l}} (B : A → Type.{k}) : Type.{max l k} := inductive Wtype.{l k} {A : Type.{l}} (B : A → Type.{k}) : Type.{max l k} :=
sup : Π (a : A), (B a → Wtype.{l k} B) → Wtype.{l k} B sup : Π (a : A), (B a → Wtype.{l k} B) → Wtype.{l k} B
@ -35,71 +35,71 @@ namespace Wtype
protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ = w := protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ = w :=
by cases w; exact idp by cases w; exact idp
definition sup_eq_sup (p : a = a') (q : p ▸ f = f') : ⟨a, f⟩ = ⟨a', f'⟩ := definition sup_eq_sup (p : a = a') (q : f =[p] f') : ⟨a, f⟩ = ⟨a', f'⟩ :=
by cases p; cases q; exact idp by cases q; exact idp
definition Wtype_eq (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) : w = w' := definition Wtype_eq (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : w = w' :=
by cases w; cases w';exact (sup_eq_sup p q) by cases w; cases w';exact (sup_eq_sup p q)
definition Wtype_eq_pr1 (p : w = w') : w.1 = w'.1 := definition Wtype_eq_pr1 (p : w = w') : w.1 = w'.1 :=
by cases p;exact idp by cases p;exact idp
definition Wtype_eq_pr2 (p : w = w') : Wtype_eq_pr1 p ▸ w.2 = w'.2 := definition Wtype_eq_pr2 (p : w = w') : w.2 =[Wtype_eq_pr1 p] w'.2 :=
by cases p;exact idp by cases p;exact idpo
namespace ops namespace ops
postfix `..1`:(max+1) := Wtype_eq_pr1 postfix `..1`:(max+1) := Wtype_eq_pr1
postfix `..2`:(max+1) := Wtype_eq_pr2 postfix `..2`:(max+1) := Wtype_eq_pr2
end ops open ops open sigma end ops open ops open sigma
definition sup_path_W (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) definition sup_path_W (p : w.1 = w'.1) (q : w.2 =[p] w'.2)
: ⟨(Wtype_eq p q)..1,(Wtype_eq p q)..2⟩ = ⟨p, q⟩ := : ⟨(Wtype_eq p q)..1, (Wtype_eq p q)..2⟩ = ⟨p, q⟩ :=
by cases w; cases w'; cases p; cases q; exact idp by cases w; cases w'; cases q; exact idp
definition pr1_path_W (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) : (Wtype_eq p q)..1 = p := definition pr1_path_W (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : (Wtype_eq p q)..1 = p :=
!sup_path_W..1 !sup_path_W..1
definition pr2_path_W (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) definition pr2_path_W (p : w.1 = w'.1) (q : w.2 =[p] w'.2)
: pr1_path_W p q ▸ (Wtype_eq p q)..2 = q := : (Wtype_eq p q)..2 =[pr1_path_W p q] q :=
!sup_path_W..2 !sup_path_W..2
definition eta_path_W (p : w = w') : Wtype_eq (p..1) (p..2) = p := definition eta_path_W (p : w = w') : Wtype_eq (p..1) (p..2) = p :=
by cases p; cases w; exact idp by cases p; cases w; exact idp
definition transport_pr1_path_W {B' : A → Type} (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) definition transport_pr1_path_W {B' : A → Type} (p : w.1 = w'.1) (q : w.2 =[p] w'.2)
: transport (λx, B' x.1) (Wtype_eq p q) = transport B' p := : transport (λx, B' x.1) (Wtype_eq p q) = transport B' p :=
by cases w; cases w'; cases p; cases q; exact idp by cases w; cases w'; cases q; exact idp
definition path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▸ w.2 = w'.2) : w = w' := definition path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2) : w = w' :=
by cases pq with p q; exact (Wtype_eq p q) by cases pq with p q; exact (Wtype_eq p q)
definition sup_path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▸ w.2 = w'.2) definition sup_path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2)
: ⟨(path_W_uncurried pq)..1, (path_W_uncurried pq)..2⟩ = pq := : ⟨(path_W_uncurried pq)..1, (path_W_uncurried pq)..2⟩ = pq :=
by cases pq with p q; exact (sup_path_W p q) by cases pq with p q; exact (sup_path_W p q)
definition pr1_path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▸ w.2 = w'.2) definition pr1_path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2)
: (path_W_uncurried pq)..1 = pq.1 := : (path_W_uncurried pq)..1 = pq.1 :=
!sup_path_W_uncurried..1 !sup_path_W_uncurried..1
definition pr2_path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▸ w.2 = w'.2) definition pr2_path_W_uncurried (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2)
: (pr1_path_W_uncurried pq) ▸ (path_W_uncurried pq)..2 = pq.2 := : (path_W_uncurried pq)..2 =[pr1_path_W_uncurried pq] pq.2 :=
!sup_path_W_uncurried..2 !sup_path_W_uncurried..2
definition eta_path_W_uncurried (p : w = w') : path_W_uncurried ⟨p..1, p..2⟩ = p := definition eta_path_W_uncurried (p : w = w') : path_W_uncurried ⟨p..1, p..2⟩ = p :=
!eta_path_W !eta_path_W
definition transport_pr1_path_W_uncurried {B' : A → Type} (pq : Σ(p : w.1 = w'.1), p ▸ w.2 = w'.2) definition transport_pr1_path_W_uncurried {B' : A → Type} (pq : Σ(p : w.1 = w'.1), w.2 =[p] w'.2)
: transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) = transport B' pq.1 := : transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) = transport B' pq.1 :=
by cases pq with p q; exact (transport_pr1_path_W p q) by cases pq with p q; exact (transport_pr1_path_W p q)
definition isequiv_path_W /-[instance]-/ (w w' : W a, B a) definition isequiv_path_W /-[instance]-/ (w w' : W a, B a)
: is_equiv (@path_W_uncurried A B w w') := : is_equiv (path_W_uncurried : (Σ(p : w.1 = w'.1), w.2 =[p] w'.2) → w = w') :=
adjointify path_W_uncurried adjointify path_W_uncurried
(λp, ⟨p..1, p..2⟩) (λp, ⟨p..1, p..2⟩)
eta_path_W_uncurried eta_path_W_uncurried
sup_path_W_uncurried sup_path_W_uncurried
definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 = w'.1), p ▸ w.2 = w'.2) ≃ (w = w') := definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 = w'.1), w.2 =[p] w'.2) ≃ (w = w') :=
equiv.mk path_W_uncurried !isequiv_path_W equiv.mk path_W_uncurried !isequiv_path_W
definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a) definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a)
@ -115,7 +115,7 @@ namespace Wtype
end end
/- truncatedness -/ /- truncatedness -/
open is_trunc open is_trunc pi
definition trunc_W [instance] (n : trunc_index) definition trunc_W [instance] (n : trunc_index)
[HA : is_trunc (n.+1) A] : is_trunc (n.+1) (W a, B a) := [HA : is_trunc (n.+1) A] : is_trunc (n.+1) (W a, B a) :=
begin begin
@ -123,9 +123,9 @@ namespace Wtype
eapply (double_induction_on w w'), intro a a' f f' IH, eapply (double_induction_on w w'), intro a a' f f' IH,
fapply is_trunc_equiv_closed, fapply is_trunc_equiv_closed,
{ apply equiv_path_W}, { apply equiv_path_W},
{ fapply is_trunc_sigma, { apply is_trunc_sigma,
intro p, cases p, esimp, intro p, cases p, esimp, apply is_trunc_equiv_closed_rev,
apply pi.is_trunc_eq_pi} apply pathover_idp}
end end
end Wtype end Wtype

View file

@ -4,5 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn Authors: Floris van Doorn
-/ -/
import .sigma .prod .pi .equiv .fiber .eq .trunc .arrow .pointed .function .trunc .bool import .sigma .prod .pi .equiv .fiber .trunc .arrow .pointed .function .trunc .bool
import .eq .square
import .nat .int import .nat .int

View file

@ -3,11 +3,11 @@ Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn Author: Floris van Doorn
Ported from Coq HoTT Partially ported from Coq HoTT
Theorems about path types (identity types) Theorems about path types (identity types)
-/ -/
open eq sigma sigma.ops equiv is_equiv open eq sigma sigma.ops equiv is_equiv equiv.ops
namespace eq namespace eq
/- Path spaces -/ /- Path spaces -/
@ -22,31 +22,31 @@ namespace eq
definition whisker_left_con_right (p : a1 = a2) {q q' q'' : a2 = a3} (r : q = q') (s : q' = q'') definition whisker_left_con_right (p : a1 = a2) {q q' q'' : a2 = a3} (r : q = q') (s : q' = q'')
: whisker_left p (r ⬝ s) = whisker_left p r ⬝ whisker_left p s := : whisker_left p (r ⬝ s) = whisker_left p r ⬝ whisker_left p s :=
begin begin
cases p, cases r, cases s, apply idp cases p, cases r, cases s, exact idp
end end
definition whisker_right_con_right {p p' p'' : a1 = a2} (q : a2 = a3) (r : p = p') (s : p' = p'') definition whisker_right_con_right {p p' p'' : a1 = a2} (q : a2 = a3) (r : p = p') (s : p' = p'')
: whisker_right (r ⬝ s) q = whisker_right r q ⬝ whisker_right s q := : whisker_right (r ⬝ s) q = whisker_right r q ⬝ whisker_right s q :=
begin begin
cases q, cases r, cases s, apply idp cases q, cases r, cases s, exact idp
end end
definition whisker_left_con_left (p : a1 = a2) (p' : a2 = a3) {q q' : a3 = a4} (r : q = q') definition whisker_left_con_left (p : a1 = a2) (p' : a2 = a3) {q q' : a3 = a4} (r : q = q')
: whisker_left (p ⬝ p') r = !con.assoc ⬝ whisker_left p (whisker_left p' r) ⬝ !con.assoc' := : whisker_left (p ⬝ p') r = !con.assoc ⬝ whisker_left p (whisker_left p' r) ⬝ !con.assoc' :=
begin begin
cases p', cases p, cases r, cases q, apply idp cases p', cases p, cases r, cases q, exact idp
end end
definition whisker_right_con_left {p p' : a1 = a2} (q : a2 = a3) (q' : a3 = a4) (r : p = p') definition whisker_right_con_left {p p' : a1 = a2} (q : a2 = a3) (q' : a3 = a4) (r : p = p')
: whisker_right r (q ⬝ q') = !con.assoc' ⬝ whisker_right (whisker_right r q) q' ⬝ !con.assoc := : whisker_right r (q ⬝ q') = !con.assoc' ⬝ whisker_right (whisker_right r q) q' ⬝ !con.assoc :=
begin begin
cases q', cases q, cases r, cases p, apply idp cases q', cases q, cases r, cases p, exact idp
end end
definition whisker_left_inv_left (p : a2 = a1) {q q' : a2 = a3} (r : q = q') definition whisker_left_inv_left (p : a2 = a1) {q q' : a2 = a3} (r : q = q')
: !con_inv_cancel_left⁻¹ ⬝ whisker_left p (whisker_left p⁻¹ r) ⬝ !con_inv_cancel_left = r := : !con_inv_cancel_left⁻¹ ⬝ whisker_left p (whisker_left p⁻¹ r) ⬝ !con_inv_cancel_left = r :=
begin begin
cases p, cases r, cases q, apply idp cases p, cases r, cases q, exact idp
end end
/- Transporting in path spaces. /- Transporting in path spaces.
@ -68,61 +68,66 @@ namespace eq
definition transport_eq_lr (p : a1 = a2) (q : a1 = a1) definition transport_eq_lr (p : a1 = a2) (q : a1 = a1)
: transport (λx, x = x) p q = p⁻¹ ⬝ q ⬝ p := : transport (λx, x = x) p q = p⁻¹ ⬝ q ⬝ p :=
begin by cases p; rewrite [▸*,idp_con]
cases p,
symmetry, transitivity (refl a1)⁻¹ ⬝ q,
apply con_idp,
apply idp_con
end
definition transport_eq_Fl (p : a1 = a2) (q : f a1 = b) definition transport_eq_Fl (p : a1 = a2) (q : f a1 = b)
: transport (λx, f x = b) p q = (ap f p)⁻¹ ⬝ q := : transport (λx, f x = b) p q = (ap f p)⁻¹ ⬝ q :=
by cases p; cases q; apply idp by cases p; cases q; reflexivity
definition transport_eq_Fr (p : a1 = a2) (q : b = f a1) definition transport_eq_Fr (p : a1 = a2) (q : b = f a1)
: transport (λx, b = f x) p q = q ⬝ (ap f p) := : transport (λx, b = f x) p q = q ⬝ (ap f p) :=
by cases p; apply idp by cases p; reflexivity
definition transport_eq_FlFr (p : a1 = a2) (q : f a1 = g a1) definition transport_eq_FlFr (p : a1 = a2) (q : f a1 = g a1)
: transport (λx, f x = g x) p q = (ap f p)⁻¹ ⬝ q ⬝ (ap g p) := : transport (λx, f x = g x) p q = (ap f p)⁻¹ ⬝ q ⬝ (ap g p) :=
begin by cases p; rewrite [▸*,idp_con]
cases p,
symmetry, transitivity (ap f (refl a1))⁻¹ ⬝ q,
apply con_idp,
apply idp_con
end
definition transport_eq_FlFr_D {B : A → Type} {f g : Πa, B a} definition transport_eq_FlFr_D {B : A → Type} {f g : Πa, B a}
(p : a1 = a2) (q : f a1 = g a1) (p : a1 = a2) (q : f a1 = g a1)
: transport (λx, f x = g x) p q = (apd f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apd g p) := : transport (λx, f x = g x) p q = (apd f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apd g p) :=
begin by cases p; rewrite [▸*,idp_con,ap_id]
cases p,
symmetry,
transitivity _,
apply con_idp,
transitivity _,
apply idp_con,
apply ap_id
end
definition transport_eq_FFlr (p : a1 = a2) (q : h (f a1) = a1) definition transport_eq_FFlr (p : a1 = a2) (q : h (f a1) = a1)
: transport (λx, h (f x) = x) p q = (ap h (ap f p))⁻¹ ⬝ q ⬝ p := : transport (λx, h (f x) = x) p q = (ap h (ap f p))⁻¹ ⬝ q ⬝ p :=
begin by cases p; rewrite [▸*,idp_con]
cases p,
symmetry,
transitivity (ap h (ap f (refl a1)))⁻¹ ⬝ q,
apply con_idp,
apply idp_con,
end
definition transport_eq_lFFr (p : a1 = a2) (q : a1 = h (f a1)) definition transport_eq_lFFr (p : a1 = a2) (q : a1 = h (f a1))
: transport (λx, x = h (f x)) p q = p⁻¹ ⬝ q ⬝ (ap h (ap f p)) := : transport (λx, x = h (f x)) p q = p⁻¹ ⬝ q ⬝ (ap h (ap f p)) :=
begin by cases p; rewrite [▸*,idp_con]
cases p, symmetry,
transitivity (refl a1)⁻¹ ⬝ q, /- Pathovers -/
apply con_idp,
apply idp_con, -- In the comment we give the fibration of the pathover
end definition pathover_eq_l (p : a1 = a2) (q : a1 = a3) : q =[p] p⁻¹ ⬝ q := /-(λx, x = a3)-/
by cases p; cases q; exact idpo
definition pathover_eq_r (p : a2 = a3) (q : a1 = a2) : q =[p] q ⬝ p := /-(λx, a1 = x)-/
by cases p; cases q; exact idpo
definition pathover_eq_lr (p : a1 = a2) (q : a1 = a1) : q =[p] p⁻¹ ⬝ q ⬝ p := /-(λx, x = x)-/
by cases p; rewrite [▸*,idp_con]; exact idpo
definition pathover_eq_Fl (p : a1 = a2) (q : f a1 = b) : q =[p] (ap f p)⁻¹ ⬝ q := /-(λx, f x = b)-/
by cases p; cases q; exact idpo
definition pathover_eq_Fr (p : a1 = a2) (q : b = f a1) : q =[p] q ⬝ (ap f p) := /-(λx, b = f x)-/
by cases p; exact idpo
definition pathover_eq_FlFr (p : a1 = a2) (q : f a1 = g a1) : q =[p] (ap f p)⁻¹ ⬝ q ⬝ (ap g p) :=
/-(λx, f x = g x)-/
by cases p; rewrite [▸*,idp_con]; exact idpo
definition pathover_eq_FlFr_D {B : A → Type} {f g : Πa, B a} (p : a1 = a2) (q : f a1 = g a1)
: q =[p] (apd f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apd g p) := /-(λx, f x = g x)-/
by cases p; rewrite [▸*,idp_con,ap_id];exact idpo
definition pathover_eq_FFlr (p : a1 = a2) (q : h (f a1) = a1) : q =[p] (ap h (ap f p))⁻¹ ⬝ q ⬝ p :=
/-(λx, h (f x) = x)-/
by cases p; rewrite [▸*,idp_con];exact idpo
definition pathover_eq_lFFr (p : a1 = a2) (q : a1 = h (f a1)) : q =[p] p⁻¹ ⬝ q ⬝ (ap h (ap f p)) :=
/-(λx, x = h (f x))-/
by cases p; rewrite [▸*,idp_con];exact idpo
-- The Functorial action of paths is [ap]. -- The Functorial action of paths is [ap].
@ -151,7 +156,7 @@ namespace eq
(λq, by cases p;cases q;exact idp) (λq, by cases p;cases q;exact idp)
local attribute is_equiv_concat_left [instance] local attribute is_equiv_concat_left [instance]
definition equiv_eq_closed_left (p : a1 = a2) (a3 : A) : (a1 = a3) ≃ (a2 = a3) := definition equiv_eq_closed_left (a3 : A) (p : a1 = a2) : (a1 = a3) ≃ (a2 = a3) :=
equiv.mk (concat p⁻¹) _ equiv.mk (concat p⁻¹) _
definition is_equiv_concat_right [instance] (p : a2 = a3) (a1 : A) definition is_equiv_concat_right [instance] (p : a2 = a3) (a1 : A)
@ -162,11 +167,11 @@ namespace eq
(λq, by cases p;cases q;exact idp) (λq, by cases p;cases q;exact idp)
local attribute is_equiv_concat_right [instance] local attribute is_equiv_concat_right [instance]
definition equiv_eq_closed_right (p : a2 = a3) (a1 : A) : (a1 = a2) ≃ (a1 = a3) := definition equiv_eq_closed_right (a1 : A) (p : a2 = a3) : (a1 = a2) ≃ (a1 = a3) :=
equiv.mk (λq, q ⬝ p) _ equiv.mk (λq, q ⬝ p) _
definition eq_equiv_eq_closed (p : a1 = a2) (q : a3 = a4) : (a1 = a3) ≃ (a2 = a4) := definition eq_equiv_eq_closed (p : a1 = a2) (q : a3 = a4) : (a1 = a3) ≃ (a2 = a4) :=
equiv.trans (equiv_eq_closed_left p a3) (equiv_eq_closed_right q a2) equiv.trans (equiv_eq_closed_left a3 p) (equiv_eq_closed_right a2 q)
definition is_equiv_whisker_left (p : a1 = a2) (q r : a2 = a3) definition is_equiv_whisker_left (p : a1 = a2) (q r : a2 = a3)
: is_equiv (@whisker_left A a1 a2 a3 p q r) := : is_equiv (@whisker_left A a1 a2 a3 p q r) :=
@ -179,10 +184,10 @@ namespace eq
apply concat2, apply concat2,
{apply concat, {apply whisker_left_con_right}, {apply concat, {apply whisker_left_con_right},
apply concat2, apply concat2,
{cases p, cases q, apply idp}, {cases p, cases q, exact idp},
{apply idp}}, {exact idp}},
{cases p, cases r, apply idp}}, {cases p, cases r, exact idp}},
{intro s, cases s, cases q, cases p, apply idp} {intro s, cases s, cases q, cases p, exact idp}
end end
definition eq_equiv_con_eq_con_left (p : a1 = a2) (q r : a2 = a3) : (q = r) ≃ (p ⬝ q = p ⬝ r) := definition eq_equiv_con_eq_con_left (p : a1 = a2) (q r : a2 = a3) : (q = r) ≃ (p ⬝ q = p ⬝ r) :=
@ -266,6 +271,44 @@ namespace eq
: (q ⬝ p⁻¹ = r) ≃ (q = r ⬝ p) := : (q ⬝ p⁻¹ = r) ≃ (q = r ⬝ p) :=
equiv.mk _ !is_equiv_eq_con_of_con_inv_eq equiv.mk _ !is_equiv_eq_con_of_con_inv_eq
/- Pathover Equivalences -/
definition pathover_eq_equiv_l (p : a1 = a2) (q : a1 = a3) (r : a2 = a3) : q =[p] r ≃ q = p ⬝ r :=
/-(λx, x = a3)-/
by cases p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹
definition pathover_eq_equiv_r (p : a2 = a3) (q : a1 = a2) (r : a1 = a3) : q =[p] r ≃ q ⬝ p = r :=
/-(λx, a1 = x)-/
by cases p; apply pathover_idp
definition pathover_eq_equiv_lr (p : a1 = a2) (q : a1 = a1) (r : a2 = a2)
: q =[p] r ≃ q ⬝ p = p ⬝ r := /-(λx, x = x)-/
by cases p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹
definition pathover_eq_equiv_Fl (p : a1 = a2) (q : f a1 = b) (r : f a2 = b)
: q =[p] r ≃ q = ap f p ⬝ r := /-(λx, f x = b)-/
by cases p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹
definition pathover_eq_equiv_Fr (p : a1 = a2) (q : b = f a1) (r : b = f a2)
: q =[p] r ≃ q ⬝ ap f p = r := /-(λx, b = f x)-/
by cases p; apply pathover_idp
definition pathover_eq_equiv_FlFr (p : a1 = a2) (q : f a1 = g a1) (r : f a2 = g a2)
: q =[p] r ≃ q ⬝ ap g p = ap f p ⬝ r := /-(λx, f x = g x)-/
by cases p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹
definition pathover_eq_equiv_FFlr (p : a1 = a2) (q : h (f a1) = a1) (r : h (f a2) = a2)
: q =[p] r ≃ q ⬝ p = ap h (ap f p) ⬝ r :=
/-(λx, h (f x) = x)-/
by cases p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹
definition pathover_eq_equiv_lFFr (p : a1 = a2) (q : a1 = h (f a1)) (r : a2 = h (f a2))
: q =[p] r ≃ q ⬝ ap h (ap f p) = p ⬝ r :=
/-(λx, x = h (f x))-/
by cases p; exact !pathover_idp ⬝e !equiv_eq_closed_right !idp_con⁻¹
-- a lot of this library still needs to be ported from Coq HoTT -- a lot of this library still needs to be ported from Coq HoTT
end eq end eq

View file

@ -36,10 +36,7 @@ namespace fiber
{apply equiv.symm, apply equiv_sigma_eq}, {apply equiv.symm, apply equiv_sigma_eq},
apply sigma_equiv_sigma_id, apply sigma_equiv_sigma_id,
intro p, intro p,
apply equiv_of_equiv_of_eq, apply pathover_eq_equiv_Fl,
rotate 1,
apply inv_con_eq_equiv_eq_con,
{apply (ap (λx, x = _)), rewrite transport_eq_Fl}
end end
definition fiber_eq {x y : fiber f b} (p : point x = point y) definition fiber_eq {x y : fiber f b} (p : point x = point y)

View file

@ -44,7 +44,7 @@ namespace is_trunc
{ apply equiv.to_is_equiv, apply is_contr.sigma_char}, { apply equiv.to_is_equiv, apply is_contr.sigma_char},
apply (@is_hprop.mk), intros, apply (@is_hprop.mk), intros,
fapply sigma_eq, {apply x.2}, fapply sigma_eq, {apply x.2},
apply (@is_hprop.elim)}, apply (@is_hprop.elimo)},
{ intro A, { intro A,
apply is_trunc_is_equiv_closed, apply is_trunc_is_equiv_closed,
apply equiv.to_is_equiv, apply equiv.to_is_equiv,

View file

@ -3,13 +3,13 @@ Copyright (c) 2014-15 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn Author: Floris van Doorn
Ported from Coq HoTT Partially ported from Coq HoTT
Theorems about pi-types (dependent function spaces) Theorems about pi-types (dependent function spaces)
-/ -/
import types.sigma import types.sigma
open eq equiv is_equiv funext open eq equiv is_equiv funext sigma
namespace pi namespace pi
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
@ -59,6 +59,26 @@ namespace pi
: (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) := : (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
eq.rec_on p idp eq.rec_on p idp
/- Pathovers -/
definition pi_pathover {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[apo011 C p q] g b') : f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, apply r
end
definition pi_pathover' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b : B a) (b' : B a') (q : pathover B b p b'), f b =[dpair_eq_dpair p q] g b')
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)),
end
/- Maps on paths -/ /- Maps on paths -/
/- The action of maps given by lambda. -/ /- The action of maps given by lambda. -/
@ -91,7 +111,8 @@ namespace pi
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/ (Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/
definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a') definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) : (f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
(Π(b : B a), (sigma_eq p idp) ▸ (f b) = g (p ▸ b)) ≃ (Π(b : B a), p ▸D (f b) = g (p ▸ b)) := (Π(b : B a), (sigma_eq p !pathover_tr) ▸ (f b) = g (p ▸ b)) ≃
(Π(b : B a), p ▸D (f b) = g (p ▸ b)) :=
eq.rec_on p (λg, !equiv.refl) g eq.rec_on p (λg, !equiv.refl) g
end end

View file

@ -3,7 +3,7 @@ Copyright (c) 2014-15 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn Author: Floris van Doorn
Ported from Coq HoTT Partially ported from Coq HoTT
Theorems about sigma-types (dependent sums) Theorems about sigma-types (dependent sums)
-/ -/
@ -26,11 +26,11 @@ namespace sigma
definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u
| eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp | eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp
definition dpair_eq_dpair (p : a = a') (q : p ▸ b = b') : ⟨a, b⟩ = ⟨a', b'⟩ := definition dpair_eq_dpair (p : a = a') (q : b =[p] b') : ⟨a, b⟩ = ⟨a', b'⟩ :=
by cases p; cases q; reflexivity by cases q; reflexivity
definition sigma_eq (p : u.1 = v.1) (q : p ▸ u.2 = v.2) : u = v := definition sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v :=
by cases u; cases v; apply (dpair_eq_dpair p q) by cases u; cases v; exact (dpair_eq_dpair p q)
/- Projections of paths from a total space -/ /- Projections of paths from a total space -/
@ -39,104 +39,104 @@ namespace sigma
postfix `..1`:(max+1) := eq_pr1 postfix `..1`:(max+1) := eq_pr1
definition eq_pr2 (p : u = v) : p..1 ▸ u.2 = v.2 := definition eq_pr2 (p : u = v) : u.2 =[p..1] v.2 :=
by cases p; reflexivity by cases p; exact idpo
postfix `..2`:(max+1) := eq_pr2 postfix `..2`:(max+1) := eq_pr2
private definition dpair_sigma_eq (p : u.1 = v.1) (q : p ▸ u.2 = v.2) private definition dpair_sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2)
: ⟨(sigma_eq p q)..1, (sigma_eq p q)..2⟩ = ⟨p, q⟩ := : ⟨(sigma_eq p q)..1, (sigma_eq p q)..2⟩ = ⟨p, q⟩ :=
by cases u; cases v; cases p; cases q; apply idp by cases u; cases v; cases q; apply idp
definition sigma_eq_pr1 (p : u.1 = v.1) (q : p ▸ u.2 = v.2) : (sigma_eq p q)..1 = p := definition sigma_eq_pr1 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..1 = p :=
(dpair_sigma_eq p q)..1 (dpair_sigma_eq p q)..1
definition sigma_eq_pr2 (p : u.1 = v.1) (q : p ▸ u.2 = v.2) definition sigma_eq_pr2 (p : u.1 = v.1) (q : u.2 =[p] v.2)
: sigma_eq_pr1 p q ▸ (sigma_eq p q)..2 = q := : (sigma_eq p q)..2 =[sigma_eq_pr1 p q] q :=
(dpair_sigma_eq p q)..2 (dpair_sigma_eq p q)..2
definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2) = p := definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2) = p :=
by cases p; cases u; reflexivity by cases p; cases u; reflexivity
definition tr_pr1_sigma_eq {B' : A → Type} (p : u.1 = v.1) (q : p ▸ u.2 = v.2) definition tr_pr1_sigma_eq {B' : A → Type} (p : u.1 = v.1) (q : u.2 =[p] v.2)
: transport (λx, B' x.1) (sigma_eq p q) = transport B' p := : transport (λx, B' x.1) (sigma_eq p q) = transport B' p :=
by cases u; cases v; cases p; cases q; reflexivity by cases u; cases v; cases q; reflexivity
/- the uncurried version of sigma_eq. We will prove that this is an equivalence -/ /- the uncurried version of sigma_eq. We will prove that this is an equivalence -/
definition sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), p ▸ u.2 = v.2), u = v definition sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), u = v
| sigma_eq_uncurried ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ | sigma_eq_unc ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂
definition dpair_sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), p ▸ u.2 = v.2), definition dpair_sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2),
⟨(sigma_eq_uncurried pq)..1, (sigma_eq_uncurried pq)..2⟩ = pq ⟨(sigma_eq_unc pq)..1, (sigma_eq_unc pq)..2⟩ = pq
| dpair_sigma_eq_uncurried ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ | dpair_sigma_eq_unc ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂
definition sigma_eq_pr1_uncurried (pq : Σ(p : u.1 = v.1), p ▸ u.2 = v.2) definition sigma_eq_pr1_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2)
: (sigma_eq_uncurried pq)..1 = pq.1 := : (sigma_eq_unc pq)..1 = pq.1 :=
(dpair_sigma_eq_uncurried pq)..1 (dpair_sigma_eq_unc pq)..1
definition sigma_eq_pr2_uncurried (pq : Σ(p : u.1 = v.1), p ▸ u.2 = v.2) definition sigma_eq_pr2_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) :
: (sigma_eq_pr1_uncurried pq) ▸ (sigma_eq_uncurried pq)..2 = pq.2 := (sigma_eq_unc pq)..2 =[sigma_eq_pr1_unc pq] pq.2 :=
(dpair_sigma_eq_uncurried pq)..2 (dpair_sigma_eq_unc pq)..2
definition sigma_eq_eta_uncurried (p : u = v) : sigma_eq_uncurried ⟨p..1, p..2⟩ = p := definition sigma_eq_eta_unc (p : u = v) : sigma_eq_unc ⟨p..1, p..2⟩ = p :=
sigma_eq_eta p sigma_eq_eta p
definition tr_sigma_eq_pr1_uncurried {B' : A → Type} definition tr_sigma_eq_pr1_unc {B' : A → Type}
(pq : Σ(p : u.1 = v.1), p ▸ u.2 = v.2) (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2)
: transport (λx, B' x.1) (@sigma_eq_uncurried A B u v pq) = transport B' pq.1 := : transport (λx, B' x.1) (@sigma_eq_unc A B u v pq) = transport B' pq.1 :=
destruct pq tr_pr1_sigma_eq destruct pq tr_pr1_sigma_eq
definition is_equiv_sigma_eq [instance] (u v : Σa, B a) definition is_equiv_sigma_eq [instance] (u v : Σa, B a)
: is_equiv (@sigma_eq_uncurried A B u v) := : is_equiv (@sigma_eq_unc A B u v) :=
adjointify sigma_eq_uncurried adjointify sigma_eq_unc
(λp, ⟨p..1, p..2⟩) (λp, ⟨p..1, p..2⟩)
sigma_eq_eta_uncurried sigma_eq_eta_unc
dpair_sigma_eq_uncurried dpair_sigma_eq_unc
definition equiv_sigma_eq (u v : Σa, B a) : (Σ(p : u.1 = v.1), p ▸ u.2 = v.2) ≃ (u = v) := definition equiv_sigma_eq (u v : Σa, B a) : (Σ(p : u.1 = v.1), u.2 =[p] v.2) ≃ (u = v) :=
equiv.mk sigma_eq_uncurried !is_equiv_sigma_eq equiv.mk sigma_eq_unc !is_equiv_sigma_eq
definition dpair_eq_dpair_con (p1 : a = a' ) (q1 : p1 ▸ b = b' ) definition dpair_eq_dpair_con (p1 : a = a' ) (q1 : b =[p1] b' )
(p2 : a' = a'') (q2 : p2 ▸ b' = b'') : (p2 : a' = a'') (q2 : b' =[p2] b'') :
dpair_eq_dpair (p1 ⬝ p2) (con_tr p1 p2 b ⬝ ap (transport B p2) q1 ⬝ q2) dpair_eq_dpair (p1 ⬝ p2) (q1 ⬝o q2) = dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 :=
= dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 := by cases q1; cases q2; reflexivity
by cases p1; cases p2; cases q1; cases q2; reflexivity
definition sigma_eq_con (p1 : u.1 = v.1) (q1 : p1 ▸ u.2 = v.2) definition sigma_eq_con (p1 : u.1 = v.1) (q1 : u.2 =[p1] v.2)
(p2 : v.1 = w.1) (q2 : p2 ▸ v.2 = w.2) : (p2 : v.1 = w.1) (q2 : v.2 =[p2] w.2) :
sigma_eq (p1 ⬝ p2) (con_tr p1 p2 u.2 ⬝ ap (transport B p2) q1 ⬝ q2) sigma_eq (p1 ⬝ p2) (q1 ⬝o q2) = sigma_eq p1 q1 ⬝ sigma_eq p2 q2 :=
= sigma_eq p1 q1 ⬝ sigma_eq p2 q2 :=
by cases u; cases v; cases w; apply dpair_eq_dpair_con by cases u; cases v; cases w; apply dpair_eq_dpair_con
local attribute dpair_eq_dpair [reducible] local attribute dpair_eq_dpair [reducible]
definition dpair_eq_dpair_con_idp (p : a = a') (q : p ▸ b = b') : definition dpair_eq_dpair_con_idp (p : a = a') (q : b =[p] b') :
dpair_eq_dpair p q = dpair_eq_dpair p idp ⬝ dpair_eq_dpair idp q := dpair_eq_dpair p q = dpair_eq_dpair p !pathover_tr ⬝
by cases p; cases q; reflexivity dpair_eq_dpair idp (pathover_idp_of_eq (tr_eq_of_pathover q)) :=
by cases q; reflexivity
/- eq_pr1 commutes with the groupoid structure. -/ /- eq_pr1 commutes with the groupoid structure. -/
definition eq_pr1_idp (u : Σa, B a) : (refl u) ..1 = refl (u.1) := idp definition eq_pr1_idp (u : Σa, B a) : (refl u) ..1 = refl (u.1) := idp
definition eq_pr1_con (p : u = v) (q : v = w) : (p ⬝ q) ..1 = (p..1) ⬝ (q..1) := !ap_con definition eq_pr1_con (p : u = v) (q : v = w) : (p ⬝ q) ..1 = (p..1) ⬝ (q..1) := !ap_con
definition eq_pr1_inv (p : u = v) : p⁻¹ ..1 = (p..1)⁻¹ := !ap_inv definition eq_pr1_inv (p : u = v) : p⁻¹ ..1 = (p..1)⁻¹ := !ap_inv
/- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/ /- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/
definition ap_dpair (q : b₁ = b₂) : ap (sigma.mk a) q = dpair_eq_dpair idp q := definition ap_dpair (q : b₁ = b₂) :
ap (sigma.mk a) q = dpair_eq_dpair idp (pathover_idp_of_eq q) :=
by cases q; reflexivity by cases q; reflexivity
/- Dependent transport is the same as transport along a sigma_eq. -/ /- Dependent transport is the same as transport along a sigma_eq. -/
definition transportD_eq_transport (p : a = a') (c : C a b) : definition transportD_eq_transport (p : a = a') (c : C a b) :
p ▸D c = transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p idp) c := p ▸D c = transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p !pathover_tr) c :=
by cases p; reflexivity by cases p; reflexivity
definition sigma_eq_eq_sigma_eq {p1 q1 : a = a'} {p2 : p1 ▸ b = b'} {q2 : q1 ▸ b = b'} definition sigma_eq_eq_sigma_eq {p1 q1 : a = a'} {p2 : b =[p1] b'} {q2 : b =[q1] b'}
(r : p1 = q1) (s : r ▸ p2 = q2) : sigma_eq p1 p2 = sigma_eq q1 q2 := (r : p1 = q1) (s : p2 =[r] q2) : sigma_eq p1 p2 = sigma_eq q1 q2 :=
by cases r; cases s; reflexivity by cases s; reflexivity
/- A path between paths in a total space is commonly shown component wise. -/ /- A path between paths in a total space is commonly shown component wise. -/
definition sigma_eq2 {p q : u = v} (r : p..1 = q..1) (s : r ▸ p..2 = q..2) definition sigma_eq2 {p q : u = v} (r : p..1 = q..1) (s : p..2 =[r] q..2)
: p = q := : p = q :=
begin begin
revert q r s, revert q r s,
@ -147,9 +147,7 @@ namespace sigma
apply sigma_eq_eta, apply sigma_eq_eta,
end end
/- In Coq they often have to give u and v explicitly when using the following definition -/ definition sigma_eq2_unc {p q : u = v} (rs : Σ(r : p..1 = q..1), p..2 =[r] q..2) : p = q :=
definition sigma_eq2_uncurried {p q : u = v}
(rs : Σ(r : p..1 = q..1), transport (λx, transport B x u.2 = v.2) r p..2 = q..2) : p = q :=
destruct rs sigma_eq2 destruct rs sigma_eq2
/- Transport -/ /- Transport -/
@ -159,7 +157,7 @@ namespace sigma
In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/ In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/
definition transport_eq (p : a = a') (bc : Σ(b : B a), C a b) definition transport_eq (p : a = a') (bc : Σ(b : B a), C a b)
: p ▸ bc = ⟨p ▸ bc.1, p ▸D bc.2⟩ := : p ▸ bc = ⟨p ▸ bc.1, p ▸D bc.2⟩ :=
by cases p; cases bc; reflexivity by cases p; cases bc; reflexivity
/- The special case when the second variable doesn't depend on the first is simpler. -/ /- The special case when the second variable doesn't depend on the first is simpler. -/
@ -175,72 +173,68 @@ namespace sigma
cases p, cases bcd with b cd, cases cd, reflexivity cases p, cases bcd with b cd, cases cd, reflexivity
end end
/- Pathovers -/
definition eta_pathover (p : a = a') (bc : Σ(b : B a), C a b)
: bc =[p] ⟨p ▸ bc.1, p ▸D bc.2⟩ :=
by cases p; cases bc; apply idpo
definition sigma_pathover (p : a = a') (u : Σ(b : B a), C a b) (v : Σ(b : B a'), C a' b)
(r : u.1 =[p] v.1) (s : u.2 =[apo011 C p r] v.2) : u =[p] v :=
begin cases u, cases v, cases r, esimp [apo011] at s, induction s using idp_rec_on, apply idpo end
/- TODO:
* define the projections from the type u =[p] v
* show that the uncurried version of sigma_pathover is an equivalence
-/
/- Functorial action -/ /- Functorial action -/
variables (f : A → A') (g : Πa, B a → B' (f a)) variables (f : A → A') (g : Πa, B a → B' (f a))
definition sigma_functor (u : Σa, B a) : Σa', B' a' := definition sigma_functor [unfold-c 7] (u : Σa, B a) : Σa', B' a' :=
⟨f u.1, g u.1 u.2⟩ ⟨f u.1, g u.1 u.2⟩
/- Equivalences -/ /- Equivalences -/
definition is_equiv_sigma_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] definition is_equiv_sigma_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
: is_equiv (sigma_functor f g) := : is_equiv (sigma_functor f g) :=
adjointify (sigma_functor f g) adjointify (sigma_functor f g)
(sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'), (sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'),
((g (f⁻¹ a'))⁻¹ (transport B' (right_inv f a')⁻¹ b')))) ((g (f⁻¹ a'))⁻¹ (transport B' (right_inv f a')⁻¹ b'))))
begin begin
intro u', intro u', cases u' with a' b',
cases u' with a' b',
apply sigma_eq (right_inv f a'), apply sigma_eq (right_inv f a'),
-- rewrite right_inv, rewrite [▸*,right_inv (g (f⁻¹ a')),▸*],
-- end apply tr_pathover
-- "rewrite right_inv (g (f⁻¹ a'))"
apply concat, apply (ap (λx, (transport B' (right_inv f a') x))), apply (right_inv (g (f⁻¹ a'))),
show right_inv f a' ▸ ((right_inv f a')⁻¹ ▸ b') = b',
from tr_inv_tr (right_inv f a') b'
end end
begin begin
intro u, intro u,
cases u with a b, cases u with a b,
apply (sigma_eq (left_inv f a)), apply (sigma_eq (left_inv f a)),
calc apply pathover_of_tr_eq,
transport B (left_inv f a) ((g (f⁻¹ (f a)))⁻¹ (transport B' (right_inv f (f a))⁻¹ (g a b))) rewrite [▸*,adj f,-(fn_tr_eq_tr_fn (left_inv f a) (λ a, (g a)⁻¹)),
= (g a)⁻¹ (transport (B' ∘ f) (left_inv f a) (transport B' (right_inv f (f a))⁻¹ (g a b))) ▸*,transport_compose B' f,tr_inv_tr,left_inv]
: by esimp; rewrite (fn_tr_eq_tr_fn (left_inv f a) (λ a, (g a)⁻¹))
... = (g a)⁻¹ (transport B' (ap f (left_inv f a)) (transport B' (right_inv f (f a))⁻¹ (g a b)))
: ap (g a)⁻¹ !transport_compose
... = (g a)⁻¹ (transport B' (ap f (left_inv f a)) (transport B' (ap f (left_inv f a))⁻¹ (g a b)))
: ap (λ x, (g a)⁻¹ (transport B' (ap f (left_inv f a)) (transport B' x⁻¹ (g a b)))) (adj f a)
... = (g a)⁻¹ (g a b) : {!tr_inv_tr}
... = b : by esimp; rewrite (left_inv (g a) b)
end end
definition sigma_equiv_sigma_of_is_equiv [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] definition sigma_equiv_sigma_of_is_equiv [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
: (Σa, B a) ≃ (Σa', B' a') := : (Σa, B a) ≃ (Σa', B' a') :=
equiv.mk (sigma_functor f g) !is_equiv_sigma_functor equiv.mk (sigma_functor f g) !is_equiv_sigma_functor
section
local attribute inv [irreducible]
local attribute function.compose [irreducible] --this is needed for the following class inference problem
definition sigma_equiv_sigma (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) : definition sigma_equiv_sigma (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) :
(Σa, B a) ≃ (Σa', B' a') := (Σa, B a) ≃ (Σa', B' a') :=
sigma_equiv_sigma_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a)) sigma_equiv_sigma_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a))
end
definition sigma_equiv_sigma_id {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a := definition sigma_equiv_sigma_id {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a :=
sigma_equiv_sigma equiv.refl Hg sigma_equiv_sigma equiv.refl Hg
definition ap_sigma_functor_eq_dpair (p : a = a') (q : p ▸ b = b') definition ap_sigma_functor_eq_dpair (p : a = a') (q : b =[p] b') :
: ap (sigma.sigma_functor f g) (sigma_eq p q) ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover.rec_on q idpo) :=
= sigma_eq (ap f p) by cases q; reflexivity
((transport_compose _ f p (g a b))⁻¹ ⬝ (fn_tr_eq_tr_fn p g b)⁻¹ ⬝ ap (g a') q) :=
by cases p; cases q; reflexivity
definition ap_sigma_functor_eq (p : u.1 = v.1) (q : p ▸ u.2 = v.2) -- definition ap_sigma_functor_eq (p : u.1 = v.1) (q : u.2 =[p] v.2)
: ap (sigma.sigma_functor f g) (sigma_eq p q) = -- : ap (sigma_functor f g) (sigma_eq p q) =
sigma_eq (ap f p) -- sigma_eq (ap f p)
((transport_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) := -- ((transport_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) :=
by cases u; cases v; apply ap_sigma_functor_eq_dpair -- by cases u; cases v; apply ap_sigma_functor_eq_dpair
/- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/ /- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/
open is_trunc open is_trunc
@ -249,7 +243,7 @@ namespace sigma
adjointify pr1 adjointify pr1
(λa, ⟨a, !center⟩) (λa, ⟨a, !center⟩)
(λa, idp) (λa, idp)
(λu, sigma_eq idp !center_eq) (λu, sigma_eq idp (pathover_idp_of_eq !center_eq))
definition sigma_equiv_of_is_contr_pr2 [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A := definition sigma_equiv_of_is_contr_pr2 [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A :=
equiv.mk pr1 _ equiv.mk pr1 _
@ -262,7 +256,7 @@ namespace sigma
(λu, (center_eq u.1)⁻¹ ▸ u.2) (λu, (center_eq u.1)⁻¹ ▸ u.2)
(λb, ⟨!center, b⟩) (λb, ⟨!center, b⟩)
(λb, ap (λx, x ▸ b) !hprop_eq_of_is_contr) (λb, ap (λx, x ▸ b) !hprop_eq_of_is_contr)
(λu, sigma_eq !center_eq !tr_inv_tr)) (λu, sigma_eq !center_eq !tr_pathover))
/- Associativity -/ /- Associativity -/
@ -284,7 +278,7 @@ namespace sigma
/- Symmetry -/ /- Symmetry -/
definition comm_equiv_uncurried (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) := definition comm_equiv_unc (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) :=
calc calc
(Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod (Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod
... ≃ Σv, C (flip v) : sigma_equiv_sigma !prod_comm_equiv ... ≃ Σv, C (flip v) : sigma_equiv_sigma !prod_comm_equiv
@ -292,7 +286,7 @@ namespace sigma
... ≃ (Σa' a, C (a, a')) : assoc_equiv_prod ... ≃ (Σa' a, C (a, a')) : assoc_equiv_prod
definition sigma_comm_equiv (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') := definition sigma_comm_equiv (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') :=
comm_equiv_uncurried (λu, C (prod.pr1 u) (prod.pr2 u)) comm_equiv_unc (λu, C (prod.pr1 u) (prod.pr2 u))
definition equiv_prod (A B : Type) : (Σ(a : A), B) ≃ A × B := definition equiv_prod (A B : Type) : (Σ(a : A), B) ≃ A × B :=
equiv.mk _ (adjointify equiv.mk _ (adjointify
@ -323,30 +317,30 @@ namespace sigma
/- *** The negative universal property. -/ /- *** The negative universal property. -/
protected definition coind_uncurried (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A) protected definition coind_unc (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A)
: Σ(b : B a), C a b := : Σ(b : B a), C a b :=
⟨fg.1 a, fg.2 a⟩ ⟨fg.1 a, fg.2 a⟩
protected definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b := protected definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
sigma.coind_uncurried ⟨f, g⟩ a sigma.coind_unc ⟨f, g⟩ a
--is the instance below dangerous? --is the instance below dangerous?
--in Coq this can be done without function extensionality --in Coq this can be done without function extensionality
definition is_equiv_coind [instance] (C : Πa, B a → Type) definition is_equiv_coind [instance] (C : Πa, B a → Type)
: is_equiv (@sigma.coind_uncurried _ _ C) := : is_equiv (@sigma.coind_unc _ _ C) :=
adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩) adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩)
(λ h, proof eq_of_homotopy (λu, !sigma.eta) qed) (λ h, proof eq_of_homotopy (λu, !sigma.eta) qed)
(λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed)) (λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed))
definition sigma_pi_equiv_pi_sigma : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) := definition sigma_pi_equiv_pi_sigma : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
equiv.mk sigma.coind_uncurried _ equiv.mk sigma.coind_unc _
end end
/- ** Subtypes (sigma types whose second components are hprops) -/ /- ** Subtypes (sigma types whose second components are hprops) -/
/- To prove equality in a subtype, we only need equality of the first component. -/ /- To prove equality in a subtype, we only need equality of the first component. -/
definition subtype_eq [H : Πa, is_hprop (B a)] (u v : Σa, B a) : u.1 = v.1 → u = v := definition subtype_eq [H : Πa, is_hprop (B a)] (u v : Σa, B a) : u.1 = v.1 → u = v :=
(sigma_eq_uncurried ∘ (@inv _ _ pr1 (@is_equiv_pr1 _ _ (λp, !is_trunc.is_trunc_eq)))) sigma_eq_unc ∘ inv pr1
definition is_equiv_subtype_eq [H : Πa, is_hprop (B a)] (u v : Σa, B a) definition is_equiv_subtype_eq [H : Πa, is_hprop (B a)] (u v : Σa, B a)
: is_equiv (subtype_eq u v) := : is_equiv (subtype_eq u v) :=
@ -361,20 +355,12 @@ namespace sigma
[HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) := [HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) :=
begin begin
revert A B HA HB, revert A B HA HB,
eapply (trunc_index.rec_on n), induction n with n IH,
intro A B HA HB, { intro A B HA HB, fapply is_trunc_equiv_closed_rev, apply sigma_equiv_of_is_contr_pr1},
fapply is_trunc.is_trunc_equiv_closed, { intro A B HA HB, apply is_trunc_succ_intro, intro u v,
symmetry, apply is_trunc_equiv_closed,
apply sigma_equiv_of_is_contr_pr1, apply equiv_sigma_eq,
intro n IH A B HA HB, exact IH _ _ _ _}
fapply is_trunc.is_trunc_succ_intro, intro u v,
fapply is_trunc.is_trunc_equiv_closed,
apply equiv_sigma_eq,
apply IH,
apply is_trunc.is_trunc_eq,
intro p,
show is_trunc n (p ▸ u .2 = v .2), from
is_trunc.is_trunc_eq n (p ▸ u.2) (v.2),
end end
end sigma end sigma

View file

@ -9,6 +9,7 @@ Various datatypes.
* [pi](pi.hlean) * [pi](pi.hlean)
* [arrow](arrow.hlean) * [arrow](arrow.hlean)
* [eq](eq.hlean) * [eq](eq.hlean)
* [square](square.hlean): type of squares in a type
* [fiber](fiber.hlean) * [fiber](fiber.hlean)
* [hprop_trunc](hprop_trunc.hlean): in this file we prove that `is_trunc n A` is a mere proposition. We separate this from [trunc](trunc.hlean) to avoid circularity in imports. * [hprop_trunc](hprop_trunc.hlean): in this file we prove that `is_trunc n A` is a mere proposition. We separate this from [trunc](trunc.hlean) to avoid circularity in imports.
* [equiv](equiv.hlean) * [equiv](equiv.hlean)