feat(library/algebra/ordered_field): add a couple missing theorems to ordered_field
This commit is contained in:
parent
a79ec6b0d4
commit
4b38e14586
1 changed files with 15 additions and 1 deletions
|
@ -94,7 +94,6 @@ section linear_ordered_field
|
|||
have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one,
|
||||
exists.intro _ H
|
||||
|
||||
|
||||
-- the following theorems amount to four iffs, for <, ≤, ≥, >.
|
||||
|
||||
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
|
||||
|
@ -133,6 +132,21 @@ section linear_ordered_field
|
|||
... > b * (1 / c) : mul_lt_mul_of_neg_right H (div_neg_of_neg Hc)
|
||||
... = b / c : div_eq_mul_one_div
|
||||
|
||||
|
||||
-----
|
||||
|
||||
theorem div_le_of_le_mul (Hb : b > 0) (H : a ≤ b * c) : a / b ≤ c :=
|
||||
calc
|
||||
a / b = a * (1 / b) : div_eq_mul_one_div
|
||||
... ≤ (b * c) * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt (div_pos_of_pos Hb))
|
||||
... = (b * c) / b : div_eq_mul_one_div
|
||||
... = c : mul_div_cancel_left (ne.symm (ne_of_lt Hb))
|
||||
|
||||
theorem le_mul_of_div_le (Hc : c > 0) (H : a / c ≤ b) : a ≤ b * c :=
|
||||
calc
|
||||
a = a / c * c : div_mul_cancel (ne.symm (ne_of_lt Hc))
|
||||
... ≤ b * c : mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
||||
|
||||
-- following these in the isabelle file, there are 8 biconditionals for the above with - signs
|
||||
-- skipping for now
|
||||
|
||||
|
|
Loading…
Reference in a new issue