feat(library/data/list): break list/basic.lean into smaller files
This commit is contained in:
parent
a223b9b1f7
commit
4be8741a39
6 changed files with 688 additions and 658 deletions
|
@ -393,165 +393,6 @@ definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : li
|
||||||
| inr Hnab := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Hab Hnab))
|
| inr Hnab := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Hab Hnab))
|
||||||
end
|
end
|
||||||
|
|
||||||
section combinators
|
|
||||||
variables {A B C : Type}
|
|
||||||
|
|
||||||
definition map (f : A → B) : list A → list B
|
|
||||||
| [] := []
|
|
||||||
| (a :: l) := f a :: map l
|
|
||||||
|
|
||||||
theorem map_nil (f : A → B) : map f [] = []
|
|
||||||
|
|
||||||
theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l
|
|
||||||
|
|
||||||
theorem map_id : ∀ l : list A, map id l = l
|
|
||||||
| [] := rfl
|
|
||||||
| (x::xs) := begin rewrite [map_cons, map_id] end
|
|
||||||
|
|
||||||
theorem map_map (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l
|
|
||||||
| [] := rfl
|
|
||||||
| (a :: l) :=
|
|
||||||
show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l),
|
|
||||||
by rewrite (map_map l)
|
|
||||||
|
|
||||||
theorem len_map (f : A → B) : ∀ l : list A, length (map f l) = length l
|
|
||||||
| [] := rfl
|
|
||||||
| (a :: l) :=
|
|
||||||
show length (map f l) + 1 = length l + 1,
|
|
||||||
by rewrite (len_map l)
|
|
||||||
|
|
||||||
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
|
|
||||||
| a [] i := absurd i !not_mem_nil
|
|
||||||
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
|
|
||||||
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
|
|
||||||
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
|
|
||||||
|
|
||||||
definition map₂ (f : A → B → C) : list A → list B → list C
|
|
||||||
| [] _ := []
|
|
||||||
| _ [] := []
|
|
||||||
| (x::xs) (y::ys) := f x y :: map₂ xs ys
|
|
||||||
|
|
||||||
definition foldl (f : A → B → A) : A → list B → A
|
|
||||||
| a [] := a
|
|
||||||
| a (b :: l) := foldl (f a b) l
|
|
||||||
|
|
||||||
theorem foldl_nil (f : A → B → A) (a : A) : foldl f a [] = a
|
|
||||||
|
|
||||||
theorem foldl_cons (f : A → B → A) (a : A) (b : B) (l : list B) : foldl f a (b::l) = foldl f (f a b) l
|
|
||||||
|
|
||||||
definition foldr (f : A → B → B) : B → list A → B
|
|
||||||
| b [] := b
|
|
||||||
| b (a :: l) := f a (foldr b l)
|
|
||||||
|
|
||||||
theorem foldr_nil (f : A → B → B) (b : B) : foldr f b [] = b
|
|
||||||
|
|
||||||
theorem foldr_cons (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (a::l) = f a (foldr f b l)
|
|
||||||
|
|
||||||
section foldl_eq_foldr
|
|
||||||
-- foldl and foldr coincide when f is commutative and associative
|
|
||||||
parameters {α : Type} {f : α → α → α}
|
|
||||||
hypothesis (Hcomm : ∀ a b, f a b = f b a)
|
|
||||||
hypothesis (Hassoc : ∀ a b c, f (f a b) c = f a (f b c))
|
|
||||||
include Hcomm Hassoc
|
|
||||||
|
|
||||||
theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l)
|
|
||||||
| a b nil := Hcomm a b
|
|
||||||
| a b (c::l) :=
|
|
||||||
begin
|
|
||||||
change (foldl f (f (f a b) c) l = f b (foldl f (f a c) l)),
|
|
||||||
rewrite -foldl_eq_of_comm_of_assoc,
|
|
||||||
change (foldl f (f (f a b) c) l = foldl f (f (f a c) b) l),
|
|
||||||
have H₁ : f (f a b) c = f (f a c) b, by rewrite [Hassoc, Hassoc, Hcomm b c],
|
|
||||||
rewrite H₁
|
|
||||||
end
|
|
||||||
|
|
||||||
theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l
|
|
||||||
| a nil := rfl
|
|
||||||
| a (b :: l) :=
|
|
||||||
begin
|
|
||||||
rewrite foldl_eq_of_comm_of_assoc,
|
|
||||||
esimp,
|
|
||||||
change (f b (foldl f a l) = f b (foldr f a l)),
|
|
||||||
rewrite foldl_eq_foldr
|
|
||||||
end
|
|
||||||
end foldl_eq_foldr
|
|
||||||
|
|
||||||
theorem foldl_append (f : B → A → B) : ∀ (b : B) (l₁ l₂ : list A), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂
|
|
||||||
| b [] l₂ := rfl
|
|
||||||
| b (a::l₁) l₂ := by rewrite [append_cons, *foldl_cons, foldl_append]
|
|
||||||
|
|
||||||
theorem foldr_append (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁
|
|
||||||
| b [] l₂ := rfl
|
|
||||||
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
|
|
||||||
|
|
||||||
definition all (p : A → Prop) (l : list A) : Prop :=
|
|
||||||
foldr (λ a r, p a ∧ r) true l
|
|
||||||
|
|
||||||
definition any (p : A → Prop) (l : list A) : Prop :=
|
|
||||||
foldr (λ a r, p a ∨ r) false l
|
|
||||||
|
|
||||||
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all p l)
|
|
||||||
| [] := decidable_true
|
|
||||||
| (a :: l) :=
|
|
||||||
match H a with
|
|
||||||
| inl Hp₁ :=
|
|
||||||
match decidable_all l with
|
|
||||||
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
|
|
||||||
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
|
|
||||||
end
|
|
||||||
| inr Hn := inr (not_and_of_not_left (all p l) Hn)
|
|
||||||
end
|
|
||||||
|
|
||||||
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any p l)
|
|
||||||
| [] := decidable_false
|
|
||||||
| (a :: l) :=
|
|
||||||
match H a with
|
|
||||||
| inl Hp := inl (or.inl Hp)
|
|
||||||
| inr Hn₁ :=
|
|
||||||
match decidable_any l with
|
|
||||||
| inl Hp₂ := inl (or.inr Hp₂)
|
|
||||||
| inr Hn₂ := inr (not_or Hn₁ Hn₂)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
definition zip (l₁ : list A) (l₂ : list B) : list (A × B) :=
|
|
||||||
map₂ (λ a b, (a, b)) l₁ l₂
|
|
||||||
|
|
||||||
definition unzip : list (A × B) → list A × list B
|
|
||||||
| [] := ([], [])
|
|
||||||
| ((a, b) :: l) :=
|
|
||||||
match unzip l with
|
|
||||||
| (la, lb) := (a :: la, b :: lb)
|
|
||||||
end
|
|
||||||
|
|
||||||
theorem unzip_nil : unzip (@nil (A × B)) = ([], [])
|
|
||||||
|
|
||||||
theorem unzip_cons (a : A) (b : B) (l : list (A × B)) :
|
|
||||||
unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end :=
|
|
||||||
rfl
|
|
||||||
|
|
||||||
theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l
|
|
||||||
| [] := rfl
|
|
||||||
| ((a, b) :: l) :=
|
|
||||||
begin
|
|
||||||
rewrite unzip_cons,
|
|
||||||
have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l,
|
|
||||||
revert r,
|
|
||||||
apply (prod.cases_on (unzip l)),
|
|
||||||
intros [la, lb, r],
|
|
||||||
rewrite -r
|
|
||||||
end
|
|
||||||
|
|
||||||
end combinators
|
|
||||||
|
|
||||||
/- flat -/
|
|
||||||
section
|
|
||||||
variable {A : Type}
|
|
||||||
|
|
||||||
definition flat (l : list (list A)) : list A :=
|
|
||||||
foldl append nil l
|
|
||||||
end
|
|
||||||
|
|
||||||
/- quasiequal a l l' means that l' is exactly l, with a added
|
/- quasiequal a l l' means that l' is exactly l, with a added
|
||||||
once somewhere -/
|
once somewhere -/
|
||||||
section qeq
|
section qeq
|
||||||
|
@ -630,503 +471,7 @@ lemma sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l →
|
||||||
(λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl)
|
(λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl)
|
||||||
(λ xinu : x ∈ u, xinu)
|
(λ xinu : x ∈ u, xinu)
|
||||||
end qeq
|
end qeq
|
||||||
|
|
||||||
section erase
|
|
||||||
variable {A : Type}
|
|
||||||
variable [H : decidable_eq A]
|
|
||||||
include H
|
|
||||||
|
|
||||||
definition erase (a : A) : list A → list A
|
|
||||||
| [] := []
|
|
||||||
| (b::l) :=
|
|
||||||
match H a b with
|
|
||||||
| inl e := l
|
|
||||||
| inr n := b :: erase l
|
|
||||||
end
|
|
||||||
|
|
||||||
lemma erase_nil (a : A) : erase a [] = [] :=
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l :=
|
|
||||||
show match H a a with | inl e := l | inr n := a :: erase a l end = l,
|
|
||||||
by rewrite decidable_eq_inl_refl
|
|
||||||
|
|
||||||
lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l :=
|
|
||||||
assume h : a ≠ b,
|
|
||||||
show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l,
|
|
||||||
by rewrite (decidable_eq_inr_neg h)
|
|
||||||
|
|
||||||
lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l)
|
|
||||||
| [] h := rfl
|
|
||||||
| [x] h := by rewrite [mem_singleton h, erase_cons_head]
|
|
||||||
| (x::y::xs) h :=
|
|
||||||
by_cases
|
|
||||||
(λ aeqx : a = x, by rewrite [aeqx, erase_cons_head])
|
|
||||||
(λ anex : a ≠ x,
|
|
||||||
assert ainyxs : a ∈ y::xs, from or_resolve_right h anex,
|
|
||||||
by rewrite [erase_cons_tail _ anex, *length_cons, length_erase_of_mem ainyxs])
|
|
||||||
|
|
||||||
lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l
|
|
||||||
| [] h := rfl
|
|
||||||
| (x::xs) h :=
|
|
||||||
assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h,
|
|
||||||
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
|
|
||||||
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs]
|
|
||||||
|
|
||||||
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
|
|
||||||
| [] l₂ h := absurd h !not_mem_nil
|
|
||||||
| (x::xs) l₂ h :=
|
|
||||||
by_cases
|
|
||||||
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
|
|
||||||
(λ anex : a ≠ x,
|
|
||||||
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
|
|
||||||
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
|
|
||||||
|
|
||||||
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
|
|
||||||
| [] l₂ h := _
|
|
||||||
| (x::xs) l₂ h :=
|
|
||||||
by_cases
|
|
||||||
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
|
|
||||||
(λ anex : a ≠ x,
|
|
||||||
assert nainxs : a ∉ xs, from not_mem_of_not_mem h,
|
|
||||||
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
|
|
||||||
|
|
||||||
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
|
|
||||||
| [] := λ x xine, xine
|
|
||||||
| (x::xs) := λ y xine,
|
|
||||||
by_cases
|
|
||||||
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
|
|
||||||
(λ anex : a ≠ x,
|
|
||||||
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
|
|
||||||
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
|
|
||||||
by_cases
|
|
||||||
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
|
|
||||||
(λ ynex : y ≠ x,
|
|
||||||
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
|
|
||||||
assert yinxs : y ∈ xs, from subxs yine,
|
|
||||||
or.inr yinxs))
|
|
||||||
|
|
||||||
theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l
|
|
||||||
| [] n i := absurd i !not_mem_nil
|
|
||||||
| (c::l) n i := by_cases
|
|
||||||
(λ beqc : b = c,
|
|
||||||
assert ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i)
|
|
||||||
(λ aeqc : a = c, absurd aeqc (beqc ▸ n))
|
|
||||||
(λ ainl : a ∈ l, ainl),
|
|
||||||
by rewrite [beqc, erase_cons_head]; exact ainl)
|
|
||||||
(λ bnec : b ≠ c, by_cases
|
|
||||||
(λ aeqc : a = c,
|
|
||||||
assert aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons,
|
|
||||||
by rewrite [erase_cons_tail _ bnec]; exact aux)
|
|
||||||
(λ anec : a ≠ c,
|
|
||||||
have ainl : a ∈ l, from mem_of_ne_of_mem anec i,
|
|
||||||
have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl,
|
|
||||||
assert aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel,
|
|
||||||
by rewrite [erase_cons_tail _ bnec]; exact aux)) --
|
|
||||||
|
|
||||||
theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l
|
|
||||||
| [] i := absurd i !not_mem_nil
|
|
||||||
| (c::l) i := by_cases
|
|
||||||
(λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i))
|
|
||||||
(λ bnec : b ≠ c,
|
|
||||||
have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i,
|
|
||||||
or.elim (eq_or_mem_of_mem_cons i₁)
|
|
||||||
(λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons)
|
|
||||||
(λ ainel : a ∈ erase b l,
|
|
||||||
have ainl : a ∈ l, from mem_of_mem_erase ainel,
|
|
||||||
mem_cons_of_mem _ ainl))
|
|
||||||
end erase
|
|
||||||
|
|
||||||
/- disjoint -/
|
|
||||||
section disjoint
|
|
||||||
variable {A : Type}
|
|
||||||
|
|
||||||
definition disjoint (l₁ l₂ : list A) : Prop := ∀ a, (a ∈ l₁ → a ∉ l₂) ∧ (a ∈ l₂ → a ∉ l₁)
|
|
||||||
|
|
||||||
lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ :=
|
|
||||||
λ d a, and.elim_left (d a)
|
|
||||||
|
|
||||||
lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ :=
|
|
||||||
λ d a, and.elim_right (d a)
|
|
||||||
|
|
||||||
lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ :=
|
|
||||||
λ d a, and.intro
|
|
||||||
(λ ainl₂ : a ∈ l₂, disjoint_right d ainl₂)
|
|
||||||
(λ ainl₁ : a ∈ l₁, disjoint_left d ainl₁)
|
|
||||||
|
|
||||||
lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ :=
|
|
||||||
λ d x, and.intro
|
|
||||||
(λ xinl₁ : x ∈ l₁, disjoint_left d (or.inr xinl₁))
|
|
||||||
(λ xinl₂ : x ∈ l₂,
|
|
||||||
have nxinal₁ : x ∉ a::l₁, from disjoint_right d xinl₂,
|
|
||||||
not_mem_of_not_mem nxinal₁)
|
|
||||||
|
|
||||||
lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ :=
|
|
||||||
λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d))
|
|
||||||
|
|
||||||
lemma disjoint_nil_left (l : list A) : disjoint [] l :=
|
|
||||||
λ a, and.intro
|
|
||||||
(λ ab : a ∈ nil, absurd ab !not_mem_nil)
|
|
||||||
(λ ainl : a ∈ l, !not_mem_nil)
|
|
||||||
|
|
||||||
lemma disjoint_nil_right (l : list A) : disjoint l [] :=
|
|
||||||
disjoint.comm (disjoint_nil_left l)
|
|
||||||
|
|
||||||
lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ :=
|
|
||||||
λ nainl₂ d x, and.intro
|
|
||||||
(λ xinal₁ : x ∈ a::l₁, or.elim (eq_or_mem_of_mem_cons xinal₁)
|
|
||||||
(λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂)
|
|
||||||
(λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁))
|
|
||||||
(λ (xinl₂ : x ∈ l₂) (xinal₁ : x ∈ a::l₁), or.elim (eq_or_mem_of_mem_cons xinal₁)
|
|
||||||
(λ xeqa : x = a, absurd (xeqa ▸ xinl₂) nainl₂)
|
|
||||||
(λ xinl₁ : x ∈ l₁, absurd xinl₁ (disjoint_right d xinl₂)))
|
|
||||||
|
|
||||||
lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l
|
|
||||||
| [] l₂ l d := disjoint_nil_left l
|
|
||||||
| (x::xs) l₂ l d :=
|
|
||||||
have nxinl : x ∉ l, from disjoint_left d !mem_cons,
|
|
||||||
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
|
|
||||||
have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁,
|
|
||||||
disjoint_cons_of_not_mem_of_disjoint nxinl d₂
|
|
||||||
|
|
||||||
lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l
|
|
||||||
| [] l₂ l d := d
|
|
||||||
| (x::xs) l₂ l d :=
|
|
||||||
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
|
|
||||||
disjoint_of_disjoint_append_left_right d₁
|
|
||||||
|
|
||||||
lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ :=
|
|
||||||
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d))
|
|
||||||
|
|
||||||
lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ :=
|
|
||||||
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d))
|
|
||||||
|
|
||||||
end disjoint
|
|
||||||
|
|
||||||
/- no duplicates predicate -/
|
|
||||||
|
|
||||||
inductive nodup {A : Type} : list A → Prop :=
|
|
||||||
| ndnil : nodup []
|
|
||||||
| ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l)
|
|
||||||
|
|
||||||
section nodup
|
|
||||||
open nodup
|
|
||||||
variables {A B : Type}
|
|
||||||
|
|
||||||
theorem nodup_nil : @nodup A [] :=
|
|
||||||
ndnil
|
|
||||||
|
|
||||||
theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) :=
|
|
||||||
λ i n, ndcons i n
|
|
||||||
|
|
||||||
theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l
|
|
||||||
| a xs (ndcons i n) := n
|
|
||||||
|
|
||||||
theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l
|
|
||||||
| a xs (ndcons i n) := i
|
|
||||||
|
|
||||||
theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁
|
|
||||||
| [] l₂ n := nodup_nil
|
|
||||||
| (x::xs) l₂ n :=
|
|
||||||
have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n),
|
|
||||||
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n,
|
|
||||||
have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂,
|
|
||||||
nodup_cons nxinxs ndxs
|
|
||||||
|
|
||||||
theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂
|
|
||||||
| [] l₂ n := n
|
|
||||||
| (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n)
|
|
||||||
|
|
||||||
theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂
|
|
||||||
| [] l₂ d := disjoint_nil_left l₂
|
|
||||||
| (x::xs) l₂ d :=
|
|
||||||
have d₁ : nodup (x::(xs++l₂)), from d,
|
|
||||||
have d₂ : nodup (xs++l₂), from nodup_of_nodup_cons d₁,
|
|
||||||
have nxin : x ∉ xs++l₂, from not_mem_of_nodup_cons d₁,
|
|
||||||
have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right nxin,
|
|
||||||
have dsj : disjoint xs l₂, from disjoint_of_nodup_append d₂,
|
|
||||||
(λ a, and.intro
|
|
||||||
(λ ainxxs : a ∈ x::xs,
|
|
||||||
or.elim (eq_or_mem_of_mem_cons ainxxs)
|
|
||||||
(λ aeqx : a = x, aeqx⁻¹ ▸ nxinl₂)
|
|
||||||
(λ ainxs : a ∈ xs, disjoint_left dsj ainxs))
|
|
||||||
(λ ainl₂ : a ∈ l₂,
|
|
||||||
have nainxs : a ∉ xs, from disjoint_right dsj ainl₂,
|
|
||||||
assume ain : a ∈ x::xs, or.elim (eq_or_mem_of_mem_cons ain)
|
|
||||||
(λ aeqx : a = x, absurd (aeqx ▸ ainl₂) nxinl₂)
|
|
||||||
(λ ainxs : a ∈ xs, absurd ainxs nainxs)))
|
|
||||||
|
|
||||||
theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂)
|
|
||||||
| [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂
|
|
||||||
| (x::xs) l₂ d₁ d₂ dsj :=
|
|
||||||
have dsj₁ : disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj,
|
|
||||||
have ndxs : nodup xs, from nodup_of_nodup_cons d₁,
|
|
||||||
have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ dsj₁,
|
|
||||||
have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁,
|
|
||||||
have nxinl₂ : x ∉ l₂, from disjoint_left dsj !mem_cons,
|
|
||||||
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_append nxinxs nxinl₂,
|
|
||||||
nodup_cons nxinxsl₂ ndxsl₂
|
|
||||||
|
|
||||||
theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) :=
|
|
||||||
have d₁ : nodup l₁, from nodup_of_nodup_append_left d,
|
|
||||||
have d₂ : nodup l₂, from nodup_of_nodup_append_right d,
|
|
||||||
have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d,
|
|
||||||
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj)
|
|
||||||
|
|
||||||
theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) :=
|
|
||||||
have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d,
|
|
||||||
have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁,
|
|
||||||
have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂,
|
|
||||||
have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁,
|
|
||||||
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain,
|
|
||||||
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain,
|
|
||||||
nodup_cons (not_mem_append nain₁ nain₂) d₃
|
|
||||||
|
|
||||||
theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) :=
|
|
||||||
have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d,
|
|
||||||
have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d,
|
|
||||||
have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁,
|
|
||||||
have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁,
|
|
||||||
have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁,
|
|
||||||
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain,
|
|
||||||
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain,
|
|
||||||
have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃,
|
|
||||||
have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)),
|
|
||||||
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂
|
|
||||||
|
|
||||||
theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
|
|
||||||
| [] n := begin rewrite [map_nil], apply nodup_nil end
|
|
||||||
| (x::xs) n :=
|
|
||||||
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
|
|
||||||
assert ndxs : nodup xs, from nodup_of_nodup_cons n,
|
|
||||||
assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
|
|
||||||
assert nfxinm : f x ∉ map f xs, from
|
|
||||||
λ ab : f x ∈ map f xs,
|
|
||||||
obtain (finv : B → A) (isinv : finv ∘ f = id), from inj,
|
|
||||||
assert finvfxin : finv (f x) ∈ map finv (map f xs), from mem_map finv ab,
|
|
||||||
assert xinxs : x ∈ xs,
|
|
||||||
begin
|
|
||||||
rewrite [map_map at finvfxin, isinv at finvfxin, left_inv_eq isinv at finvfxin],
|
|
||||||
rewrite [map_id at finvfxin],
|
|
||||||
exact finvfxin
|
|
||||||
end,
|
|
||||||
absurd xinxs nxinxs,
|
|
||||||
nodup_cons nfxinm ndmfxs
|
|
||||||
|
|
||||||
theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l)
|
|
||||||
| [] n := nodup_nil
|
|
||||||
| (b::l) n := by_cases
|
|
||||||
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n))
|
|
||||||
(λ aneb : a ≠ b,
|
|
||||||
have nbinl : b ∉ l, from not_mem_of_nodup_cons n,
|
|
||||||
have ndl : nodup l, from nodup_of_nodup_cons n,
|
|
||||||
have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl,
|
|
||||||
have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl,
|
|
||||||
assert aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal,
|
|
||||||
by rewrite [erase_cons_tail _ aneb]; exact aux)
|
|
||||||
|
|
||||||
theorem mem_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l
|
|
||||||
| [] n := !not_mem_nil
|
|
||||||
| (b::l) n :=
|
|
||||||
have ndl : nodup l, from nodup_of_nodup_cons n,
|
|
||||||
have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl,
|
|
||||||
assert nbinl : b ∉ l, from not_mem_of_nodup_cons n,
|
|
||||||
by_cases
|
|
||||||
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl)
|
|
||||||
(λ aneb : a ≠ b,
|
|
||||||
assert aux : a ∉ b :: erase a l, from
|
|
||||||
assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal)
|
|
||||||
(λ aeqb : a = b, absurd aeqb aneb)
|
|
||||||
(λ aineal : a ∈ erase a l, absurd aineal naineal),
|
|
||||||
by rewrite [erase_cons_tail _ aneb]; exact aux)
|
|
||||||
|
|
||||||
definition erase_dup [H : decidable_eq A] : list A → list A
|
|
||||||
| [] := []
|
|
||||||
| (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs
|
|
||||||
|
|
||||||
theorem erase_dup_nil [H : decidable_eq A] : erase_dup [] = []
|
|
||||||
|
|
||||||
theorem erase_dup_cons_of_mem [H : decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l :=
|
|
||||||
assume ainl, calc
|
|
||||||
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
|
|
||||||
... = erase_dup l : if_pos ainl
|
|
||||||
|
|
||||||
theorem erase_dup_cons_of_not_mem [H : decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l :=
|
|
||||||
assume nainl, calc
|
|
||||||
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
|
|
||||||
... = a :: erase_dup l : if_neg nainl
|
|
||||||
|
|
||||||
theorem mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l
|
|
||||||
| [] h := absurd h !not_mem_nil
|
|
||||||
| (b::l) h := by_cases
|
|
||||||
(λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h)
|
|
||||||
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl))
|
|
||||||
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl)))
|
|
||||||
(λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h)
|
|
||||||
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons)
|
|
||||||
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl))))
|
|
||||||
|
|
||||||
theorem mem_of_mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l
|
|
||||||
| [] h := by rewrite [erase_dup_nil at h]; exact h
|
|
||||||
| (b::l) h := by_cases
|
|
||||||
(λ binl : b ∈ l,
|
|
||||||
have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h,
|
|
||||||
or.inr (mem_of_mem_erase_dup h₁))
|
|
||||||
(λ nbinl : b ∉ l,
|
|
||||||
have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h,
|
|
||||||
or.elim (eq_or_mem_of_mem_cons h₁)
|
|
||||||
(λ aeqb : a = b, by rewrite aeqb; exact !mem_cons)
|
|
||||||
(λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel)))
|
|
||||||
|
|
||||||
theorem nodup_erase_dup [H : decidable_eq A] : ∀ l : list A, nodup (erase_dup l)
|
|
||||||
| [] := by rewrite erase_dup_nil; exact nodup_nil
|
|
||||||
| (a::l) := by_cases
|
|
||||||
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l))
|
|
||||||
(λ nainl : a ∉ l,
|
|
||||||
assert r : nodup (erase_dup l), from nodup_erase_dup l,
|
|
||||||
assert nin : a ∉ erase_dup l, from
|
|
||||||
assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl,
|
|
||||||
by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r))
|
|
||||||
|
|
||||||
theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l
|
|
||||||
| [] d := rfl
|
|
||||||
| (a::l) d :=
|
|
||||||
assert nainl : a ∉ l, from not_mem_of_nodup_cons d,
|
|
||||||
assert dl : nodup l, from nodup_of_nodup_cons d,
|
|
||||||
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
|
|
||||||
end nodup
|
|
||||||
|
|
||||||
/- union -/
|
|
||||||
section union
|
|
||||||
variable {A : Type}
|
|
||||||
variable [H : decidable_eq A]
|
|
||||||
include H
|
|
||||||
|
|
||||||
definition union : list A → list A → list A
|
|
||||||
| [] l₂ := l₂
|
|
||||||
| (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂
|
|
||||||
|
|
||||||
theorem union_nil (l : list A) : union [] l = l
|
|
||||||
|
|
||||||
theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ :=
|
|
||||||
take l₁, assume ainl₂, calc
|
|
||||||
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
|
|
||||||
... = union l₁ l₂ : if_pos ainl₂
|
|
||||||
|
|
||||||
theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ :=
|
|
||||||
take l₁, assume nainl₂, calc
|
|
||||||
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
|
|
||||||
... = a :: union l₁ l₂ : if_neg nainl₂
|
|
||||||
|
|
||||||
theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ ∨ a ∈ l₂
|
|
||||||
| [] l₂ a ainl₂ := by rewrite union_nil at ainl₂; exact (or.inr (ainl₂))
|
|
||||||
| (b::l₁) l₂ a ainbl₁l₂ := by_cases
|
|
||||||
(λ binl₂ : b ∈ l₂,
|
|
||||||
have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂,
|
|
||||||
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
|
||||||
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
|
|
||||||
(λ ainl₂, or.inr ainl₂))
|
|
||||||
(λ nbinl₂ : b ∉ l₂,
|
|
||||||
have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂,
|
|
||||||
or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂)
|
|
||||||
(λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons))
|
|
||||||
(λ ainl₁l₂,
|
|
||||||
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
|
||||||
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
|
|
||||||
(λ ainl₂, or.inr ainl₂)))
|
|
||||||
|
|
||||||
theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂
|
|
||||||
| [] l₂ h := by rewrite union_nil; exact h
|
|
||||||
| (b::l₁) l₂ h := by_cases
|
|
||||||
(λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h))
|
|
||||||
(λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h)))
|
|
||||||
|
|
||||||
theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂
|
|
||||||
| [] l₂ h := absurd h !not_mem_nil
|
|
||||||
| (b::l₁) l₂ h := by_cases
|
|
||||||
(λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h)
|
|
||||||
(λ aeqb : a = b,
|
|
||||||
by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂))
|
|
||||||
(λ ainl₁ : a ∈ l₁,
|
|
||||||
by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁)))
|
|
||||||
(λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h)
|
|
||||||
(λ aeqb : a = b,
|
|
||||||
by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons)
|
|
||||||
(λ ainl₁ : a ∈ l₁,
|
|
||||||
by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁))))
|
|
||||||
|
|
||||||
theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂)
|
|
||||||
| [] l₂ n₁ nl₂ := by rewrite union_nil; exact nl₂
|
|
||||||
| (a::l₁) l₂ nal₁ nl₂ :=
|
|
||||||
assert nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁,
|
|
||||||
assert nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂,
|
|
||||||
by_cases
|
|
||||||
(λ ainl₂ : a ∈ l₂,
|
|
||||||
by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂)
|
|
||||||
(λ nainl₂ : a ∉ l₂,
|
|
||||||
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁,
|
|
||||||
assert nainl₁l₂ : a ∉ union l₁ l₂, from
|
|
||||||
assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
|
||||||
(λ ainl₁, absurd ainl₁ nainl₁)
|
|
||||||
(λ ainl₂, absurd ainl₂ nainl₂),
|
|
||||||
by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂))
|
|
||||||
|
|
||||||
theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂
|
|
||||||
| [] l₂ d := rfl
|
|
||||||
| (a::l₁) l₂ d :=
|
|
||||||
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
|
|
||||||
assert d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d,
|
|
||||||
by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁]
|
|
||||||
|
|
||||||
variable {B : Type}
|
|
||||||
theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
|
|
||||||
: foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ :=
|
|
||||||
by rewrite [union_eq_append d, foldl_append]
|
|
||||||
|
|
||||||
theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
|
|
||||||
: foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ :=
|
|
||||||
by rewrite [union_eq_append d, foldr_append]
|
|
||||||
end union
|
|
||||||
|
|
||||||
/- insert -/
|
|
||||||
section insert
|
|
||||||
variable {A : Type}
|
|
||||||
variable [H : decidable_eq A]
|
|
||||||
include H
|
|
||||||
|
|
||||||
definition insert (a : A) (l : list A) : list A :=
|
|
||||||
if a ∈ l then l else a::l
|
|
||||||
|
|
||||||
theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l :=
|
|
||||||
assume ainl, if_pos ainl
|
|
||||||
|
|
||||||
theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l :=
|
|
||||||
assume nainl, if_neg nainl
|
|
||||||
|
|
||||||
theorem mem_insert (a : A) (l : list A) : a ∈ insert a l :=
|
|
||||||
by_cases
|
|
||||||
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl)
|
|
||||||
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons)
|
|
||||||
|
|
||||||
theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l :=
|
|
||||||
assume ainl, by_cases
|
|
||||||
(λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl)
|
|
||||||
(λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl))
|
|
||||||
|
|
||||||
theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) :=
|
|
||||||
assume n, by_cases
|
|
||||||
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n)
|
|
||||||
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n))
|
|
||||||
|
|
||||||
theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l :=
|
|
||||||
assume ainl, by rewrite [insert_eq_of_mem ainl]
|
|
||||||
|
|
||||||
theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 :=
|
|
||||||
assume nainl, by rewrite [insert_eq_of_not_mem nainl]
|
|
||||||
end insert
|
|
||||||
end list
|
end list
|
||||||
|
|
||||||
attribute list.has_decidable_eq [instance]
|
attribute list.has_decidable_eq [instance]
|
||||||
attribute list.decidable_mem [instance]
|
attribute list.decidable_mem [instance]
|
||||||
attribute list.decidable_any [instance]
|
|
||||||
attribute list.decidable_all [instance]
|
|
||||||
|
|
10
library/data/list/bigop.lean
Normal file
10
library/data/list/bigop.lean
Normal file
|
@ -0,0 +1,10 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: data.list.bigop
|
||||||
|
Authors: Leonardo de Moura
|
||||||
|
|
||||||
|
Big operators for lists
|
||||||
|
-/
|
||||||
|
import data.list.comb
|
168
library/data/list/comb.lean
Normal file
168
library/data/list/comb.lean
Normal file
|
@ -0,0 +1,168 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: data.list.comb
|
||||||
|
Authors: Leonardo de Moura
|
||||||
|
|
||||||
|
List combinators
|
||||||
|
-/
|
||||||
|
import data.list.basic
|
||||||
|
open nat prod decidable function helper_tactics
|
||||||
|
|
||||||
|
namespace list
|
||||||
|
variables {A B C : Type}
|
||||||
|
|
||||||
|
definition map (f : A → B) : list A → list B
|
||||||
|
| [] := []
|
||||||
|
| (a :: l) := f a :: map l
|
||||||
|
|
||||||
|
theorem map_nil (f : A → B) : map f [] = []
|
||||||
|
|
||||||
|
theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l
|
||||||
|
|
||||||
|
theorem map_id : ∀ l : list A, map id l = l
|
||||||
|
| [] := rfl
|
||||||
|
| (x::xs) := begin rewrite [map_cons, map_id] end
|
||||||
|
|
||||||
|
theorem map_map (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l
|
||||||
|
| [] := rfl
|
||||||
|
| (a :: l) :=
|
||||||
|
show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l),
|
||||||
|
by rewrite (map_map l)
|
||||||
|
|
||||||
|
theorem len_map (f : A → B) : ∀ l : list A, length (map f l) = length l
|
||||||
|
| [] := by esimp
|
||||||
|
| (a :: l) :=
|
||||||
|
show length (map f l) + 1 = length l + 1,
|
||||||
|
by rewrite (len_map l)
|
||||||
|
|
||||||
|
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
|
||||||
|
| a [] i := absurd i !not_mem_nil
|
||||||
|
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
|
||||||
|
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
|
||||||
|
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
|
||||||
|
|
||||||
|
definition map₂ (f : A → B → C) : list A → list B → list C
|
||||||
|
| [] _ := []
|
||||||
|
| _ [] := []
|
||||||
|
| (x::xs) (y::ys) := f x y :: map₂ xs ys
|
||||||
|
|
||||||
|
definition foldl (f : A → B → A) : A → list B → A
|
||||||
|
| a [] := a
|
||||||
|
| a (b :: l) := foldl (f a b) l
|
||||||
|
|
||||||
|
theorem foldl_nil (f : A → B → A) (a : A) : foldl f a [] = a
|
||||||
|
|
||||||
|
theorem foldl_cons (f : A → B → A) (a : A) (b : B) (l : list B) : foldl f a (b::l) = foldl f (f a b) l
|
||||||
|
|
||||||
|
definition foldr (f : A → B → B) : B → list A → B
|
||||||
|
| b [] := b
|
||||||
|
| b (a :: l) := f a (foldr b l)
|
||||||
|
|
||||||
|
theorem foldr_nil (f : A → B → B) (b : B) : foldr f b [] = b
|
||||||
|
|
||||||
|
theorem foldr_cons (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (a::l) = f a (foldr f b l)
|
||||||
|
|
||||||
|
section foldl_eq_foldr
|
||||||
|
-- foldl and foldr coincide when f is commutative and associative
|
||||||
|
parameters {α : Type} {f : α → α → α}
|
||||||
|
hypothesis (Hcomm : ∀ a b, f a b = f b a)
|
||||||
|
hypothesis (Hassoc : ∀ a b c, f (f a b) c = f a (f b c))
|
||||||
|
include Hcomm Hassoc
|
||||||
|
|
||||||
|
theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l)
|
||||||
|
| a b nil := Hcomm a b
|
||||||
|
| a b (c::l) :=
|
||||||
|
begin
|
||||||
|
change (foldl f (f (f a b) c) l = f b (foldl f (f a c) l)),
|
||||||
|
rewrite -foldl_eq_of_comm_of_assoc,
|
||||||
|
change (foldl f (f (f a b) c) l = foldl f (f (f a c) b) l),
|
||||||
|
have H₁ : f (f a b) c = f (f a c) b, by rewrite [Hassoc, Hassoc, Hcomm b c],
|
||||||
|
rewrite H₁
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l
|
||||||
|
| a nil := rfl
|
||||||
|
| a (b :: l) :=
|
||||||
|
begin
|
||||||
|
rewrite foldl_eq_of_comm_of_assoc,
|
||||||
|
esimp,
|
||||||
|
change (f b (foldl f a l) = f b (foldr f a l)),
|
||||||
|
rewrite foldl_eq_foldr
|
||||||
|
end
|
||||||
|
end foldl_eq_foldr
|
||||||
|
|
||||||
|
theorem foldl_append (f : B → A → B) : ∀ (b : B) (l₁ l₂ : list A), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂
|
||||||
|
| b [] l₂ := rfl
|
||||||
|
| b (a::l₁) l₂ := by rewrite [append_cons, *foldl_cons, foldl_append]
|
||||||
|
|
||||||
|
theorem foldr_append (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁
|
||||||
|
| b [] l₂ := rfl
|
||||||
|
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
|
||||||
|
|
||||||
|
definition all (p : A → Prop) (l : list A) : Prop :=
|
||||||
|
foldr (λ a r, p a ∧ r) true l
|
||||||
|
|
||||||
|
definition any (p : A → Prop) (l : list A) : Prop :=
|
||||||
|
foldr (λ a r, p a ∨ r) false l
|
||||||
|
|
||||||
|
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all p l)
|
||||||
|
| [] := decidable_true
|
||||||
|
| (a :: l) :=
|
||||||
|
match H a with
|
||||||
|
| inl Hp₁ :=
|
||||||
|
match decidable_all l with
|
||||||
|
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
|
||||||
|
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
|
||||||
|
end
|
||||||
|
| inr Hn := inr (not_and_of_not_left (all p l) Hn)
|
||||||
|
end
|
||||||
|
|
||||||
|
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any p l)
|
||||||
|
| [] := decidable_false
|
||||||
|
| (a :: l) :=
|
||||||
|
match H a with
|
||||||
|
| inl Hp := inl (or.inl Hp)
|
||||||
|
| inr Hn₁ :=
|
||||||
|
match decidable_any l with
|
||||||
|
| inl Hp₂ := inl (or.inr Hp₂)
|
||||||
|
| inr Hn₂ := inr (not_or Hn₁ Hn₂)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
definition zip (l₁ : list A) (l₂ : list B) : list (A × B) :=
|
||||||
|
map₂ (λ a b, (a, b)) l₁ l₂
|
||||||
|
|
||||||
|
definition unzip : list (A × B) → list A × list B
|
||||||
|
| [] := ([], [])
|
||||||
|
| ((a, b) :: l) :=
|
||||||
|
match unzip l with
|
||||||
|
| (la, lb) := (a :: la, b :: lb)
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem unzip_nil : unzip (@nil (A × B)) = ([], [])
|
||||||
|
|
||||||
|
theorem unzip_cons (a : A) (b : B) (l : list (A × B)) :
|
||||||
|
unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end :=
|
||||||
|
rfl
|
||||||
|
|
||||||
|
theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l
|
||||||
|
| [] := rfl
|
||||||
|
| ((a, b) :: l) :=
|
||||||
|
begin
|
||||||
|
rewrite unzip_cons,
|
||||||
|
have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l,
|
||||||
|
revert r,
|
||||||
|
apply (prod.cases_on (unzip l)),
|
||||||
|
intros [la, lb, r],
|
||||||
|
rewrite -r
|
||||||
|
end
|
||||||
|
|
||||||
|
/- flat -/
|
||||||
|
definition flat (l : list (list A)) : list A :=
|
||||||
|
foldl append nil l
|
||||||
|
end list
|
||||||
|
|
||||||
|
attribute list.decidable_any [instance]
|
||||||
|
attribute list.decidable_all [instance]
|
|
@ -1,5 +1,5 @@
|
||||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
-- Author: Jeremy Avigad
|
-- Author: Jeremy Avigad
|
||||||
|
import data.list.basic data.list.comb data.list.set data.list.perm
|
||||||
import data.list.basic
|
import data.list.bigop
|
||||||
|
|
|
@ -7,7 +7,7 @@ Author: Leonardo de Moura
|
||||||
|
|
||||||
List permutations
|
List permutations
|
||||||
-/
|
-/
|
||||||
import data.list.basic
|
import data.list.basic data.list.set
|
||||||
open list setoid nat binary
|
open list setoid nat binary
|
||||||
|
|
||||||
variables {A B : Type}
|
variables {A B : Type}
|
||||||
|
|
507
library/data/list/set.lean
Normal file
507
library/data/list/set.lean
Normal file
|
@ -0,0 +1,507 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: data.list.set
|
||||||
|
Authors: Leonardo de Moura
|
||||||
|
|
||||||
|
Set-like operations on lists
|
||||||
|
-/
|
||||||
|
import data.list.basic data.list.comb
|
||||||
|
open nat function decidable helper_tactics eq.ops
|
||||||
|
|
||||||
|
namespace list
|
||||||
|
section erase
|
||||||
|
variable {A : Type}
|
||||||
|
variable [H : decidable_eq A]
|
||||||
|
include H
|
||||||
|
|
||||||
|
definition erase (a : A) : list A → list A
|
||||||
|
| [] := []
|
||||||
|
| (b::l) :=
|
||||||
|
match H a b with
|
||||||
|
| inl e := l
|
||||||
|
| inr n := b :: erase l
|
||||||
|
end
|
||||||
|
|
||||||
|
lemma erase_nil (a : A) : erase a [] = [] :=
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l :=
|
||||||
|
show match H a a with | inl e := l | inr n := a :: erase a l end = l,
|
||||||
|
by rewrite decidable_eq_inl_refl
|
||||||
|
|
||||||
|
lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l :=
|
||||||
|
assume h : a ≠ b,
|
||||||
|
show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l,
|
||||||
|
by rewrite (decidable_eq_inr_neg h)
|
||||||
|
|
||||||
|
lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l)
|
||||||
|
| [] h := rfl
|
||||||
|
| [x] h := by rewrite [mem_singleton h, erase_cons_head]
|
||||||
|
| (x::y::xs) h :=
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite [aeqx, erase_cons_head])
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert ainyxs : a ∈ y::xs, from or_resolve_right h anex,
|
||||||
|
by rewrite [erase_cons_tail _ anex, *length_cons, length_erase_of_mem ainyxs])
|
||||||
|
|
||||||
|
lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l
|
||||||
|
| [] h := rfl
|
||||||
|
| (x::xs) h :=
|
||||||
|
assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h,
|
||||||
|
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
|
||||||
|
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs]
|
||||||
|
|
||||||
|
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
|
||||||
|
| [] l₂ h := absurd h !not_mem_nil
|
||||||
|
| (x::xs) l₂ h :=
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
|
||||||
|
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
|
||||||
|
|
||||||
|
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
|
||||||
|
| [] l₂ h := rfl
|
||||||
|
| (x::xs) l₂ h :=
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert nainxs : a ∉ xs, from not_mem_of_not_mem h,
|
||||||
|
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
|
||||||
|
|
||||||
|
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
|
||||||
|
| [] := λ x xine, xine
|
||||||
|
| (x::xs) := λ y xine,
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
|
||||||
|
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
|
||||||
|
by_cases
|
||||||
|
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
|
||||||
|
(λ ynex : y ≠ x,
|
||||||
|
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
|
||||||
|
assert yinxs : y ∈ xs, from subxs yine,
|
||||||
|
or.inr yinxs))
|
||||||
|
|
||||||
|
theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l
|
||||||
|
| [] n i := absurd i !not_mem_nil
|
||||||
|
| (c::l) n i := by_cases
|
||||||
|
(λ beqc : b = c,
|
||||||
|
assert ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i)
|
||||||
|
(λ aeqc : a = c, absurd aeqc (beqc ▸ n))
|
||||||
|
(λ ainl : a ∈ l, ainl),
|
||||||
|
by rewrite [beqc, erase_cons_head]; exact ainl)
|
||||||
|
(λ bnec : b ≠ c, by_cases
|
||||||
|
(λ aeqc : a = c,
|
||||||
|
assert aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons,
|
||||||
|
by rewrite [erase_cons_tail _ bnec]; exact aux)
|
||||||
|
(λ anec : a ≠ c,
|
||||||
|
have ainl : a ∈ l, from mem_of_ne_of_mem anec i,
|
||||||
|
have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl,
|
||||||
|
assert aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel,
|
||||||
|
by rewrite [erase_cons_tail _ bnec]; exact aux)) --
|
||||||
|
|
||||||
|
theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l
|
||||||
|
| [] i := absurd i !not_mem_nil
|
||||||
|
| (c::l) i := by_cases
|
||||||
|
(λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i))
|
||||||
|
(λ bnec : b ≠ c,
|
||||||
|
have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i,
|
||||||
|
or.elim (eq_or_mem_of_mem_cons i₁)
|
||||||
|
(λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons)
|
||||||
|
(λ ainel : a ∈ erase b l,
|
||||||
|
have ainl : a ∈ l, from mem_of_mem_erase ainel,
|
||||||
|
mem_cons_of_mem _ ainl))
|
||||||
|
end erase
|
||||||
|
|
||||||
|
/- disjoint -/
|
||||||
|
section disjoint
|
||||||
|
variable {A : Type}
|
||||||
|
|
||||||
|
definition disjoint (l₁ l₂ : list A) : Prop := ∀ a, (a ∈ l₁ → a ∉ l₂) ∧ (a ∈ l₂ → a ∉ l₁)
|
||||||
|
|
||||||
|
lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ :=
|
||||||
|
λ d a, and.elim_left (d a)
|
||||||
|
|
||||||
|
lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ :=
|
||||||
|
λ d a, and.elim_right (d a)
|
||||||
|
|
||||||
|
lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ :=
|
||||||
|
λ d a, and.intro
|
||||||
|
(λ ainl₂ : a ∈ l₂, disjoint_right d ainl₂)
|
||||||
|
(λ ainl₁ : a ∈ l₁, disjoint_left d ainl₁)
|
||||||
|
|
||||||
|
lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ :=
|
||||||
|
λ d x, and.intro
|
||||||
|
(λ xinl₁ : x ∈ l₁, disjoint_left d (or.inr xinl₁))
|
||||||
|
(λ xinl₂ : x ∈ l₂,
|
||||||
|
have nxinal₁ : x ∉ a::l₁, from disjoint_right d xinl₂,
|
||||||
|
not_mem_of_not_mem nxinal₁)
|
||||||
|
|
||||||
|
lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ :=
|
||||||
|
λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d))
|
||||||
|
|
||||||
|
lemma disjoint_nil_left (l : list A) : disjoint [] l :=
|
||||||
|
λ a, and.intro
|
||||||
|
(λ ab : a ∈ nil, absurd ab !not_mem_nil)
|
||||||
|
(λ ainl : a ∈ l, !not_mem_nil)
|
||||||
|
|
||||||
|
lemma disjoint_nil_right (l : list A) : disjoint l [] :=
|
||||||
|
disjoint.comm (disjoint_nil_left l)
|
||||||
|
|
||||||
|
lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ :=
|
||||||
|
λ nainl₂ d x, and.intro
|
||||||
|
(λ xinal₁ : x ∈ a::l₁, or.elim (eq_or_mem_of_mem_cons xinal₁)
|
||||||
|
(λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂)
|
||||||
|
(λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁))
|
||||||
|
(λ (xinl₂ : x ∈ l₂) (xinal₁ : x ∈ a::l₁), or.elim (eq_or_mem_of_mem_cons xinal₁)
|
||||||
|
(λ xeqa : x = a, absurd (xeqa ▸ xinl₂) nainl₂)
|
||||||
|
(λ xinl₁ : x ∈ l₁, absurd xinl₁ (disjoint_right d xinl₂)))
|
||||||
|
|
||||||
|
lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l
|
||||||
|
| [] l₂ l d := disjoint_nil_left l
|
||||||
|
| (x::xs) l₂ l d :=
|
||||||
|
have nxinl : x ∉ l, from disjoint_left d !mem_cons,
|
||||||
|
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
|
||||||
|
have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁,
|
||||||
|
disjoint_cons_of_not_mem_of_disjoint nxinl d₂
|
||||||
|
|
||||||
|
lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l
|
||||||
|
| [] l₂ l d := d
|
||||||
|
| (x::xs) l₂ l d :=
|
||||||
|
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
|
||||||
|
disjoint_of_disjoint_append_left_right d₁
|
||||||
|
|
||||||
|
lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ :=
|
||||||
|
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d))
|
||||||
|
|
||||||
|
lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ :=
|
||||||
|
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d))
|
||||||
|
|
||||||
|
end disjoint
|
||||||
|
|
||||||
|
/- no duplicates predicate -/
|
||||||
|
|
||||||
|
inductive nodup {A : Type} : list A → Prop :=
|
||||||
|
| ndnil : nodup []
|
||||||
|
| ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l)
|
||||||
|
|
||||||
|
section nodup
|
||||||
|
open nodup
|
||||||
|
variables {A B : Type}
|
||||||
|
|
||||||
|
theorem nodup_nil : @nodup A [] :=
|
||||||
|
ndnil
|
||||||
|
|
||||||
|
theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) :=
|
||||||
|
λ i n, ndcons i n
|
||||||
|
|
||||||
|
theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l
|
||||||
|
| a xs (ndcons i n) := n
|
||||||
|
|
||||||
|
theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l
|
||||||
|
| a xs (ndcons i n) := i
|
||||||
|
|
||||||
|
theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁
|
||||||
|
| [] l₂ n := nodup_nil
|
||||||
|
| (x::xs) l₂ n :=
|
||||||
|
have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n),
|
||||||
|
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n,
|
||||||
|
have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂,
|
||||||
|
nodup_cons nxinxs ndxs
|
||||||
|
|
||||||
|
theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂
|
||||||
|
| [] l₂ n := n
|
||||||
|
| (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n)
|
||||||
|
|
||||||
|
theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂
|
||||||
|
| [] l₂ d := disjoint_nil_left l₂
|
||||||
|
| (x::xs) l₂ d :=
|
||||||
|
have d₁ : nodup (x::(xs++l₂)), from d,
|
||||||
|
have d₂ : nodup (xs++l₂), from nodup_of_nodup_cons d₁,
|
||||||
|
have nxin : x ∉ xs++l₂, from not_mem_of_nodup_cons d₁,
|
||||||
|
have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right nxin,
|
||||||
|
have dsj : disjoint xs l₂, from disjoint_of_nodup_append d₂,
|
||||||
|
(λ a, and.intro
|
||||||
|
(λ ainxxs : a ∈ x::xs,
|
||||||
|
or.elim (eq_or_mem_of_mem_cons ainxxs)
|
||||||
|
(λ aeqx : a = x, aeqx⁻¹ ▸ nxinl₂)
|
||||||
|
(λ ainxs : a ∈ xs, disjoint_left dsj ainxs))
|
||||||
|
(λ ainl₂ : a ∈ l₂,
|
||||||
|
have nainxs : a ∉ xs, from disjoint_right dsj ainl₂,
|
||||||
|
assume ain : a ∈ x::xs, or.elim (eq_or_mem_of_mem_cons ain)
|
||||||
|
(λ aeqx : a = x, absurd (aeqx ▸ ainl₂) nxinl₂)
|
||||||
|
(λ ainxs : a ∈ xs, absurd ainxs nainxs)))
|
||||||
|
|
||||||
|
theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂)
|
||||||
|
| [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂
|
||||||
|
| (x::xs) l₂ d₁ d₂ dsj :=
|
||||||
|
have dsj₁ : disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj,
|
||||||
|
have ndxs : nodup xs, from nodup_of_nodup_cons d₁,
|
||||||
|
have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ dsj₁,
|
||||||
|
have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁,
|
||||||
|
have nxinl₂ : x ∉ l₂, from disjoint_left dsj !mem_cons,
|
||||||
|
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_append nxinxs nxinl₂,
|
||||||
|
nodup_cons nxinxsl₂ ndxsl₂
|
||||||
|
|
||||||
|
theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) :=
|
||||||
|
have d₁ : nodup l₁, from nodup_of_nodup_append_left d,
|
||||||
|
have d₂ : nodup l₂, from nodup_of_nodup_append_right d,
|
||||||
|
have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d,
|
||||||
|
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj)
|
||||||
|
|
||||||
|
theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) :=
|
||||||
|
have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d,
|
||||||
|
have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁,
|
||||||
|
have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂,
|
||||||
|
have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁,
|
||||||
|
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain,
|
||||||
|
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain,
|
||||||
|
nodup_cons (not_mem_append nain₁ nain₂) d₃
|
||||||
|
|
||||||
|
theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) :=
|
||||||
|
have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d,
|
||||||
|
have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d,
|
||||||
|
have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁,
|
||||||
|
have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁,
|
||||||
|
have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁,
|
||||||
|
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain,
|
||||||
|
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain,
|
||||||
|
have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃,
|
||||||
|
have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)),
|
||||||
|
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂
|
||||||
|
|
||||||
|
theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
|
||||||
|
| [] n := begin rewrite [map_nil], apply nodup_nil end
|
||||||
|
| (x::xs) n :=
|
||||||
|
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
|
||||||
|
assert ndxs : nodup xs, from nodup_of_nodup_cons n,
|
||||||
|
assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
|
||||||
|
assert nfxinm : f x ∉ map f xs, from
|
||||||
|
λ ab : f x ∈ map f xs,
|
||||||
|
obtain (finv : B → A) (isinv : finv ∘ f = id), from inj,
|
||||||
|
assert finvfxin : finv (f x) ∈ map finv (map f xs), from mem_map finv ab,
|
||||||
|
assert xinxs : x ∈ xs,
|
||||||
|
begin
|
||||||
|
rewrite [map_map at finvfxin, isinv at finvfxin, left_inv_eq isinv at finvfxin],
|
||||||
|
rewrite [map_id at finvfxin],
|
||||||
|
exact finvfxin
|
||||||
|
end,
|
||||||
|
absurd xinxs nxinxs,
|
||||||
|
nodup_cons nfxinm ndmfxs
|
||||||
|
|
||||||
|
theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l)
|
||||||
|
| [] n := nodup_nil
|
||||||
|
| (b::l) n := by_cases
|
||||||
|
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n))
|
||||||
|
(λ aneb : a ≠ b,
|
||||||
|
have nbinl : b ∉ l, from not_mem_of_nodup_cons n,
|
||||||
|
have ndl : nodup l, from nodup_of_nodup_cons n,
|
||||||
|
have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl,
|
||||||
|
have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl,
|
||||||
|
assert aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal,
|
||||||
|
by rewrite [erase_cons_tail _ aneb]; exact aux)
|
||||||
|
|
||||||
|
theorem mem_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l
|
||||||
|
| [] n := !not_mem_nil
|
||||||
|
| (b::l) n :=
|
||||||
|
have ndl : nodup l, from nodup_of_nodup_cons n,
|
||||||
|
have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl,
|
||||||
|
assert nbinl : b ∉ l, from not_mem_of_nodup_cons n,
|
||||||
|
by_cases
|
||||||
|
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl)
|
||||||
|
(λ aneb : a ≠ b,
|
||||||
|
assert aux : a ∉ b :: erase a l, from
|
||||||
|
assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal)
|
||||||
|
(λ aeqb : a = b, absurd aeqb aneb)
|
||||||
|
(λ aineal : a ∈ erase a l, absurd aineal naineal),
|
||||||
|
by rewrite [erase_cons_tail _ aneb]; exact aux)
|
||||||
|
|
||||||
|
definition erase_dup [H : decidable_eq A] : list A → list A
|
||||||
|
| [] := []
|
||||||
|
| (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs
|
||||||
|
|
||||||
|
theorem erase_dup_nil [H : decidable_eq A] : erase_dup [] = []
|
||||||
|
|
||||||
|
theorem erase_dup_cons_of_mem [H : decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l :=
|
||||||
|
assume ainl, calc
|
||||||
|
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
|
||||||
|
... = erase_dup l : if_pos ainl
|
||||||
|
|
||||||
|
theorem erase_dup_cons_of_not_mem [H : decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l :=
|
||||||
|
assume nainl, calc
|
||||||
|
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
|
||||||
|
... = a :: erase_dup l : if_neg nainl
|
||||||
|
|
||||||
|
theorem mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l
|
||||||
|
| [] h := absurd h !not_mem_nil
|
||||||
|
| (b::l) h := by_cases
|
||||||
|
(λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h)
|
||||||
|
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl))
|
||||||
|
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl)))
|
||||||
|
(λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h)
|
||||||
|
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons)
|
||||||
|
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl))))
|
||||||
|
|
||||||
|
theorem mem_of_mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l
|
||||||
|
| [] h := by rewrite [erase_dup_nil at h]; exact h
|
||||||
|
| (b::l) h := by_cases
|
||||||
|
(λ binl : b ∈ l,
|
||||||
|
have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h,
|
||||||
|
or.inr (mem_of_mem_erase_dup h₁))
|
||||||
|
(λ nbinl : b ∉ l,
|
||||||
|
have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h,
|
||||||
|
or.elim (eq_or_mem_of_mem_cons h₁)
|
||||||
|
(λ aeqb : a = b, by rewrite aeqb; exact !mem_cons)
|
||||||
|
(λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel)))
|
||||||
|
|
||||||
|
theorem nodup_erase_dup [H : decidable_eq A] : ∀ l : list A, nodup (erase_dup l)
|
||||||
|
| [] := by rewrite erase_dup_nil; exact nodup_nil
|
||||||
|
| (a::l) := by_cases
|
||||||
|
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l))
|
||||||
|
(λ nainl : a ∉ l,
|
||||||
|
assert r : nodup (erase_dup l), from nodup_erase_dup l,
|
||||||
|
assert nin : a ∉ erase_dup l, from
|
||||||
|
assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl,
|
||||||
|
by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r))
|
||||||
|
|
||||||
|
theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l
|
||||||
|
| [] d := rfl
|
||||||
|
| (a::l) d :=
|
||||||
|
assert nainl : a ∉ l, from not_mem_of_nodup_cons d,
|
||||||
|
assert dl : nodup l, from nodup_of_nodup_cons d,
|
||||||
|
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
|
||||||
|
end nodup
|
||||||
|
|
||||||
|
/- union -/
|
||||||
|
section union
|
||||||
|
variable {A : Type}
|
||||||
|
variable [H : decidable_eq A]
|
||||||
|
include H
|
||||||
|
|
||||||
|
definition union : list A → list A → list A
|
||||||
|
| [] l₂ := l₂
|
||||||
|
| (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂
|
||||||
|
|
||||||
|
theorem union_nil (l : list A) : union [] l = l
|
||||||
|
|
||||||
|
theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ :=
|
||||||
|
take l₁, assume ainl₂, calc
|
||||||
|
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
|
||||||
|
... = union l₁ l₂ : if_pos ainl₂
|
||||||
|
|
||||||
|
theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ :=
|
||||||
|
take l₁, assume nainl₂, calc
|
||||||
|
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
|
||||||
|
... = a :: union l₁ l₂ : if_neg nainl₂
|
||||||
|
|
||||||
|
theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ ∨ a ∈ l₂
|
||||||
|
| [] l₂ a ainl₂ := by rewrite union_nil at ainl₂; exact (or.inr (ainl₂))
|
||||||
|
| (b::l₁) l₂ a ainbl₁l₂ := by_cases
|
||||||
|
(λ binl₂ : b ∈ l₂,
|
||||||
|
have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂,
|
||||||
|
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
||||||
|
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
|
||||||
|
(λ ainl₂, or.inr ainl₂))
|
||||||
|
(λ nbinl₂ : b ∉ l₂,
|
||||||
|
have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂,
|
||||||
|
or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂)
|
||||||
|
(λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons))
|
||||||
|
(λ ainl₁l₂,
|
||||||
|
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
||||||
|
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
|
||||||
|
(λ ainl₂, or.inr ainl₂)))
|
||||||
|
|
||||||
|
theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂
|
||||||
|
| [] l₂ h := by rewrite union_nil; exact h
|
||||||
|
| (b::l₁) l₂ h := by_cases
|
||||||
|
(λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h))
|
||||||
|
(λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h)))
|
||||||
|
|
||||||
|
theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂
|
||||||
|
| [] l₂ h := absurd h !not_mem_nil
|
||||||
|
| (b::l₁) l₂ h := by_cases
|
||||||
|
(λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h)
|
||||||
|
(λ aeqb : a = b,
|
||||||
|
by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂))
|
||||||
|
(λ ainl₁ : a ∈ l₁,
|
||||||
|
by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁)))
|
||||||
|
(λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h)
|
||||||
|
(λ aeqb : a = b,
|
||||||
|
by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons)
|
||||||
|
(λ ainl₁ : a ∈ l₁,
|
||||||
|
by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁))))
|
||||||
|
|
||||||
|
theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂)
|
||||||
|
| [] l₂ n₁ nl₂ := by rewrite union_nil; exact nl₂
|
||||||
|
| (a::l₁) l₂ nal₁ nl₂ :=
|
||||||
|
assert nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁,
|
||||||
|
assert nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂,
|
||||||
|
by_cases
|
||||||
|
(λ ainl₂ : a ∈ l₂,
|
||||||
|
by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂)
|
||||||
|
(λ nainl₂ : a ∉ l₂,
|
||||||
|
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁,
|
||||||
|
assert nainl₁l₂ : a ∉ union l₁ l₂, from
|
||||||
|
assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂)
|
||||||
|
(λ ainl₁, absurd ainl₁ nainl₁)
|
||||||
|
(λ ainl₂, absurd ainl₂ nainl₂),
|
||||||
|
by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂))
|
||||||
|
|
||||||
|
theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂
|
||||||
|
| [] l₂ d := rfl
|
||||||
|
| (a::l₁) l₂ d :=
|
||||||
|
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
|
||||||
|
assert d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d,
|
||||||
|
by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁]
|
||||||
|
|
||||||
|
variable {B : Type}
|
||||||
|
theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
|
||||||
|
: foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ :=
|
||||||
|
by rewrite [union_eq_append d, foldl_append]
|
||||||
|
|
||||||
|
theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
|
||||||
|
: foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ :=
|
||||||
|
by rewrite [union_eq_append d, foldr_append]
|
||||||
|
end union
|
||||||
|
|
||||||
|
/- insert -/
|
||||||
|
section insert
|
||||||
|
variable {A : Type}
|
||||||
|
variable [H : decidable_eq A]
|
||||||
|
include H
|
||||||
|
|
||||||
|
definition insert (a : A) (l : list A) : list A :=
|
||||||
|
if a ∈ l then l else a::l
|
||||||
|
|
||||||
|
theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l :=
|
||||||
|
assume ainl, if_pos ainl
|
||||||
|
|
||||||
|
theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l :=
|
||||||
|
assume nainl, if_neg nainl
|
||||||
|
|
||||||
|
theorem mem_insert (a : A) (l : list A) : a ∈ insert a l :=
|
||||||
|
by_cases
|
||||||
|
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl)
|
||||||
|
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons)
|
||||||
|
|
||||||
|
theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l :=
|
||||||
|
assume ainl, by_cases
|
||||||
|
(λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl)
|
||||||
|
(λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl))
|
||||||
|
|
||||||
|
theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) :=
|
||||||
|
assume n, by_cases
|
||||||
|
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n)
|
||||||
|
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n))
|
||||||
|
|
||||||
|
theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l :=
|
||||||
|
assume ainl, by rewrite [insert_eq_of_mem ainl]
|
||||||
|
|
||||||
|
theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 :=
|
||||||
|
assume nainl, by rewrite [insert_eq_of_not_mem nainl]
|
||||||
|
end insert
|
||||||
|
end list
|
Loading…
Reference in a new issue