fix(library/tactic/unfold_rec): support indexed families + brec_on at unfold_rec

see issue #692
This commit is contained in:
Leonardo de Moura 2015-07-12 12:45:05 -04:00
parent 584f9e3f49
commit 4c0a656ecc
3 changed files with 76 additions and 0 deletions

View file

@ -250,6 +250,10 @@ class unfold_rec_fn : public replace_visitor_aux {
}
buffer<expr> new_args;
new_args.append(m_args);
unsigned nindices = m_indices_pos.size();
for (unsigned i = 0; i < m_indices_pos.size(); i++) {
new_args[m_indices_pos[i]] = nested_args[m_major_idx - nindices + i];
}
new_args[m_main_pos] = nested_args[m_major_idx];
for (unsigned i = 0; i < m_rec_arg_pos.size(); i++) {
new_args[m_rec_arg_pos[i]] = args[prefix_size + i];

View file

@ -0,0 +1,50 @@
import data.vector
open nat vector
variables {A B : Type}
variable {n : nat}
theorem tst1 : ∀ n m, succ n + succ m = succ (succ (n + m)) :=
begin
intro n m,
esimp [add],
state,
rewrite [succ_add]
end
definition add2 (x y : nat) : nat :=
nat.rec_on x (λ y, y) (λ x r y, succ (r y)) y
local infix + := add2
theorem tst2 : ∀ n m, succ n + succ m = succ (succ (n + m)) :=
begin
intro n m,
esimp [add2],
state,
apply sorry
end
definition fib (A : Type) : nat → nat → nat → nat
| b 0 c := b
| b 1 c := c
| b (succ (succ a)) c := fib b a c + fib b (succ a) c
theorem fibgt0 : ∀ b n c, fib nat b n c > 0
| b 0 c := sorry
| b 1 c := sorry
| b (succ (succ m)) c :=
begin
unfold fib,
state,
apply sorry
end
theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂)
| 0 [] [] := rfl
| (succ m) (a::va) (b::vb) :=
begin
unfold [zip, unzip],
state,
rewrite [unzip_zip]
end

View file

@ -0,0 +1,22 @@
import data.vector
open nat vector
variable {A : Type}
definition rev : Π {n : nat}, vector A n → vector A n
| ⌞0⌟ [] := []
| ⌞n+1⌟ (x :: xs) := concat (rev xs) x
theorem rev_concat : Π {n : nat} (xs : vector A n) (a : A), rev (concat xs a) = a :: rev xs
| 0 [] a := rfl
| (n+1) (x :: xs) a :=
begin
unfold [concat, rev], rewrite rev_concat
end
theorem rev_rev : Π {n : nat} (xs : vector A n), rev (rev xs) = xs
| 0 [] := rfl
| (n+1) (x :: xs) :=
begin
unfold rev at {1}, krewrite rev_concat, rewrite rev_rev
end