feat(builtin/num): prove basic theorems using simplifier

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-02-09 11:24:53 -08:00
parent 633ed6bb69
commit 4c4c8b3e0d

View file

@ -68,11 +68,11 @@ theorem succ_inj {a b : num} : succ a = succ b → a = b
from rep_inj rep_eq from rep_inj rep_eq
theorem succ_nz (a : num) : ¬ (succ a = zero) theorem succ_nz (a : num) : ¬ (succ a = zero)
:= assume R : succ a = zero, := not_intro (assume R : succ a = zero,
have Heq1 : S (rep a) = Z, have Heq1 : S (rep a) = Z,
from abst_inj inhab (succ_pred a) zero_pred R, from abst_inj inhab (succ_pred a) zero_pred R,
show false, show false,
from absurd Heq1 (S_ne_Z (rep a)) from absurd Heq1 (S_ne_Z (rep a)))
add_rewrite succ_nz add_rewrite succ_nz
@ -518,6 +518,64 @@ add_rewrite add_zeror add_succr mul_zeror mul_succr
set_opaque add true set_opaque add true
set_opaque mul true set_opaque mul true
theorem add_zerol (a : num) : zero + a = a
:= induction_on a (by simp) (by simp)
theorem add_succl (a b : num) : (succ a) + b = succ (a + b)
:= induction_on b (by simp) (by simp)
add_rewrite add_zerol add_succl
theorem add_comm (a b : num) : a + b = b + a
:= induction_on b (by simp) (by simp)
theorem add_assoc (a b c : num) : (a + b) + c = a + (b + c)
:= induction_on a (by simp) (by simp)
theorem add_left_comm (a b c : num) : a + (b + c) = b + (a + c)
:= left_comm add_comm add_assoc a b c
add_rewrite add_assoc add_comm add_left_comm
theorem mul_zerol (a : num) : zero * a = zero
:= induction_on a (by simp) (by simp)
theorem mul_succl (a b : num) : (succ a) * b = a * b + b
:= induction_on b (by simp) (by simp)
add_rewrite mul_zerol mul_succl
theorem mul_onel (a : num) : (succ zero) * a = a
:= induction_on a (by simp) (by simp)
theorem mul_oner (a : num) : a * (succ zero) = a
:= induction_on a (by simp) (by simp)
add_rewrite mul_onel mul_oner
theorem mul_comm (a b : num) : a * b = b * a
:= induction_on b (by simp) (by simp)
exit
theorem distributer (a b c : num) : a * (b + c) = a * b + a * c
:= induction_on a (by simp) (by simp)
add_rewrite mul_comm distributer
theorem distributel (a b c : num) : (a + b) * c = a * c + b * c
:= induction_on a (by simp) (by simp)
add_rewrite distributel
theorem mul_assoc (a b c : num) : (a * b) * c = a * (b * c)
:= induction_on b (by simp) (by simp)
theorem mul_left_comm (a b c : num) : a * (b * c) = b * (a * c)
:= left_comm mul_comm mul_assoc a b c
add_rewrite mul_assoc mul_left_comm
end end
definition num := num::num definition num := num::num