feat(hott): add lemma: equivalent fin sets come from equal numbers, sums with fin sets are cancellable

This commit is contained in:
Jakob von Raumer 2016-02-08 17:20:19 +00:00 committed by Leonardo de Moura
parent 4edb6d7765
commit 4d6c516c01

View file

@ -336,12 +336,11 @@ begin
induction (nat.decidable_lt 0 vk) with [HT, HF], induction (nat.decidable_lt 0 vk) with [HT, HF],
{ show C (mk vk pk), from { show C (mk vk pk), from
let vj := nat.pred vk in let vj := nat.pred vk in
have vk = vj+1, from have vk = nat.succ vj, from
inverse (succ_pred_of_pos HT), inverse (succ_pred_of_pos HT),
assert vj < n, from assert vj < n, from
lt_of_succ_lt_succ (eq.subst `vk = vj+1` pk), lt_of_succ_lt_succ (eq.subst `vk = nat.succ vj` pk),
have succ (mk vj `vj < n`) = mk vk pk, from have succ (mk vj `vj < n`) = mk vk pk, by apply val_inj; apply (succ_pred_of_pos HT),
val_inj (inverse `vk = vj+1`),
eq.rec_on this (CS (mk vj `vj < n`)) }, eq.rec_on this (CS (mk vj `vj < n`)) },
{ show C (mk vk pk), from { show C (mk vk pk), from
have vk = 0, from have vk = 0, from
@ -406,7 +405,7 @@ definition foldr {A B : Type} (m : A → B → B) (b : B) : Π {n : nat}, (fin n
definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B := definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi)) nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi))
theorem choice {C : fin n → Type} : /-theorem choice {C : fin n → Type} :
(Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) := (Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) :=
begin begin
revert C, revert C,
@ -421,7 +420,7 @@ begin
intro CS, intro CS,
apply nonempty.intro, apply nonempty.intro,
exact zero_succ_cases CO CS } exact zero_succ_cases CO CS }
end end-/
/-section /-section
open list open list
@ -532,11 +531,33 @@ calc
... ≃ unit + unit : H ... ≃ unit + unit : H
... ≃ bool : bool_equiv_unit_sum_unit ... ≃ bool : bool_equiv_unit_sum_unit
definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (n+1) := definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (nat.succ n) :=
let H := equiv_unit_of_is_contr (fin 1) in let H := equiv_unit_of_is_contr (fin 1) in
calc calc
fin n + unit ≃ fin n + fin 1 : H fin n + unit ≃ fin n + fin 1 : H
... ≃ fin (n+1) : fin_sum_equiv ... ≃ fin (nat.succ n) : fin_sum_equiv
definition fin_sum_equiv_cancel {n : nat} {A B : Type} (H : (fin n) + A ≃ (fin n) + B) :
A ≃ B :=
begin
induction n with n IH,
{ calc A ≃ A + empty : sum_empty_equiv
... ≃ empty + A : sum_comm_equiv
... ≃ fin 0 + A : fin_zero_equiv_empty
... ≃ fin 0 + B : H
... ≃ empty + B : fin_zero_equiv_empty
... ≃ B + empty : sum_comm_equiv
... ≃ B : sum_empty_equiv },
{ apply IH, apply unit_sum_equiv_cancel,
calc unit + (fin n + A) ≃ (unit + fin n) + A : sum_assoc_equiv
... ≃ (fin n + unit) + A : sum_comm_equiv
... ≃ fin (nat.succ n) + A : fin_sum_unit_equiv
... ≃ fin (nat.succ n) + B : H
... ≃ (fin n + unit) + B : fin_sum_unit_equiv
... ≃ (unit + fin n) + B : sum_comm_equiv
... ≃ unit + (fin n + B) : sum_assoc_equiv },
end
definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n := definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n :=
begin begin
@ -545,10 +566,13 @@ begin
apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero }, apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero },
{ intro n H, cases n with n, exfalso, { intro n H, cases n with n, exfalso,
apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero, apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero,
have fin n + unit ≃ fin m + unit, from have unit + fin m ≃ unit + fin n, from
calc fin n + unit ≃ fin (nat.succ n) : fin_succ_equiv calc unit + fin m ≃ fin m + unit : sum_comm_equiv
... ≃ fin (nat.succ m) : H ... ≃ fin (nat.succ m) : fin_succ_equiv
... ≃ fin m + unit : fin_succ_equiv, exact sorry }, ... ≃ fin (nat.succ n) : H
... ≃ fin n + unit : fin_succ_equiv
... ≃ unit + fin n : sum_comm_equiv,
have fin m ≃ fin n, from unit_sum_equiv_cancel this,
apply ap nat.succ, apply IH _ this },
end end
end fin end fin