feat(hott): add lemma: equivalent fin sets come from equal numbers, sums with fin sets are cancellable
This commit is contained in:
parent
4edb6d7765
commit
4d6c516c01
1 changed files with 37 additions and 13 deletions
|
@ -336,12 +336,11 @@ begin
|
||||||
induction (nat.decidable_lt 0 vk) with [HT, HF],
|
induction (nat.decidable_lt 0 vk) with [HT, HF],
|
||||||
{ show C (mk vk pk), from
|
{ show C (mk vk pk), from
|
||||||
let vj := nat.pred vk in
|
let vj := nat.pred vk in
|
||||||
have vk = vj+1, from
|
have vk = nat.succ vj, from
|
||||||
inverse (succ_pred_of_pos HT),
|
inverse (succ_pred_of_pos HT),
|
||||||
assert vj < n, from
|
assert vj < n, from
|
||||||
lt_of_succ_lt_succ (eq.subst `vk = vj+1` pk),
|
lt_of_succ_lt_succ (eq.subst `vk = nat.succ vj` pk),
|
||||||
have succ (mk vj `vj < n`) = mk vk pk, from
|
have succ (mk vj `vj < n`) = mk vk pk, by apply val_inj; apply (succ_pred_of_pos HT),
|
||||||
val_inj (inverse `vk = vj+1`),
|
|
||||||
eq.rec_on this (CS (mk vj `vj < n`)) },
|
eq.rec_on this (CS (mk vj `vj < n`)) },
|
||||||
{ show C (mk vk pk), from
|
{ show C (mk vk pk), from
|
||||||
have vk = 0, from
|
have vk = 0, from
|
||||||
|
@ -406,7 +405,7 @@ definition foldr {A B : Type} (m : A → B → B) (b : B) : Π {n : nat}, (fin n
|
||||||
definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
|
definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
|
||||||
nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi))
|
nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi))
|
||||||
|
|
||||||
theorem choice {C : fin n → Type} :
|
/-theorem choice {C : fin n → Type} :
|
||||||
(Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) :=
|
(Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) :=
|
||||||
begin
|
begin
|
||||||
revert C,
|
revert C,
|
||||||
|
@ -421,7 +420,7 @@ begin
|
||||||
intro CS,
|
intro CS,
|
||||||
apply nonempty.intro,
|
apply nonempty.intro,
|
||||||
exact zero_succ_cases CO CS }
|
exact zero_succ_cases CO CS }
|
||||||
end
|
end-/
|
||||||
|
|
||||||
/-section
|
/-section
|
||||||
open list
|
open list
|
||||||
|
@ -532,11 +531,33 @@ calc
|
||||||
... ≃ unit + unit : H
|
... ≃ unit + unit : H
|
||||||
... ≃ bool : bool_equiv_unit_sum_unit
|
... ≃ bool : bool_equiv_unit_sum_unit
|
||||||
|
|
||||||
definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (n+1) :=
|
definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (nat.succ n) :=
|
||||||
let H := equiv_unit_of_is_contr (fin 1) in
|
let H := equiv_unit_of_is_contr (fin 1) in
|
||||||
calc
|
calc
|
||||||
fin n + unit ≃ fin n + fin 1 : H
|
fin n + unit ≃ fin n + fin 1 : H
|
||||||
... ≃ fin (n+1) : fin_sum_equiv
|
... ≃ fin (nat.succ n) : fin_sum_equiv
|
||||||
|
|
||||||
|
definition fin_sum_equiv_cancel {n : nat} {A B : Type} (H : (fin n) + A ≃ (fin n) + B) :
|
||||||
|
A ≃ B :=
|
||||||
|
begin
|
||||||
|
induction n with n IH,
|
||||||
|
{ calc A ≃ A + empty : sum_empty_equiv
|
||||||
|
... ≃ empty + A : sum_comm_equiv
|
||||||
|
... ≃ fin 0 + A : fin_zero_equiv_empty
|
||||||
|
... ≃ fin 0 + B : H
|
||||||
|
... ≃ empty + B : fin_zero_equiv_empty
|
||||||
|
... ≃ B + empty : sum_comm_equiv
|
||||||
|
... ≃ B : sum_empty_equiv },
|
||||||
|
{ apply IH, apply unit_sum_equiv_cancel,
|
||||||
|
calc unit + (fin n + A) ≃ (unit + fin n) + A : sum_assoc_equiv
|
||||||
|
... ≃ (fin n + unit) + A : sum_comm_equiv
|
||||||
|
... ≃ fin (nat.succ n) + A : fin_sum_unit_equiv
|
||||||
|
... ≃ fin (nat.succ n) + B : H
|
||||||
|
... ≃ (fin n + unit) + B : fin_sum_unit_equiv
|
||||||
|
... ≃ (unit + fin n) + B : sum_comm_equiv
|
||||||
|
... ≃ unit + (fin n + B) : sum_assoc_equiv },
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n :=
|
definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n :=
|
||||||
begin
|
begin
|
||||||
|
@ -545,10 +566,13 @@ begin
|
||||||
apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero },
|
apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero },
|
||||||
{ intro n H, cases n with n, exfalso,
|
{ intro n H, cases n with n, exfalso,
|
||||||
apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero,
|
apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero,
|
||||||
have fin n + unit ≃ fin m + unit, from
|
have unit + fin m ≃ unit + fin n, from
|
||||||
calc fin n + unit ≃ fin (nat.succ n) : fin_succ_equiv
|
calc unit + fin m ≃ fin m + unit : sum_comm_equiv
|
||||||
... ≃ fin (nat.succ m) : H
|
... ≃ fin (nat.succ m) : fin_succ_equiv
|
||||||
... ≃ fin m + unit : fin_succ_equiv, exact sorry },
|
... ≃ fin (nat.succ n) : H
|
||||||
|
... ≃ fin n + unit : fin_succ_equiv
|
||||||
|
... ≃ unit + fin n : sum_comm_equiv,
|
||||||
|
have fin m ≃ fin n, from unit_sum_equiv_cancel this,
|
||||||
|
apply ap nat.succ, apply IH _ this },
|
||||||
end
|
end
|
||||||
|
|
||||||
end fin
|
end fin
|
||||||
|
|
Loading…
Reference in a new issue