refactor(builtin/kernel): use iff instead of = for Booleans

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-16 02:05:09 -08:00
parent 5453a8f2f1
commit 4dc98bc73b
13 changed files with 154 additions and 118 deletions

View file

@ -21,12 +21,17 @@ infixr 30 : or
definition and (a b : Bool) := ¬ (a → ¬ b) definition and (a b : Bool) := ¬ (a → ¬ b)
definition implies (a b : Bool) := a → b
infixr 35 && : and infixr 35 && : and
infixr 35 /\ : and infixr 35 /\ : and
infixr 35 ∧ : and infixr 35 ∧ : and
definition implies (a b : Bool) := a → b
definition iff (a b : Bool) := a == b
infixr 25 <-> : iff
infixr 25 ⟷ : iff
-- The Lean parser has special treatment for the constant exists. -- The Lean parser has special treatment for the constant exists.
-- It allows us to write -- It allows us to write
-- exists x y : A, P x y and ∃ x y : A, P x y -- exists x y : A, P x y and ∃ x y : A, P x y
@ -98,8 +103,8 @@ theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha) := assume Ha, H2 (H1 ◂ Ha)
theorem not_not_eq (a : Bool) : (¬ ¬ a) = a theorem not_not_eq (a : Bool) : ¬ ¬ a ⟷ a
:= case (λ x, (¬ ¬ x) = x) trivial trivial a := case (λ x, ¬ ¬ x ⟷ x) trivial trivial a
theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a
:= (not_not_eq a) ◂ H := (not_not_eq a) ◂ H
@ -223,14 +228,14 @@ theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
:= boolext (assume H1 : a, absurd H1 H) := boolext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2) (assume H2 : false, false_elim a H2)
theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : (a = b) = false theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : a = b ⟷ false
:= eqf_intro H := eqf_intro H
theorem or_comm (a b : Bool) : (a b) = (b a) theorem or_comm (a b : Bool) : a b ⟷ b a
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a)) := boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b)) (assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))
theorem or_assoc (a b c : Bool) : ((a b) c) = (a (b c)) theorem or_assoc (a b c : Bool) : (a b) c ⟷ a (b c)
:= boolext (assume H : (a b) c, := boolext (assume H : (a b) c,
or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c)) or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c))
(λ Hb : b, or_intror a (or_introl Hb c))) (λ Hb : b, or_intror a (or_introl Hb c)))
@ -240,120 +245,120 @@ theorem or_assoc (a b c : Bool) : ((a b) c) = (a (b c))
(λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c) (λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c)
(λ Hc : c, or_intror (a b) Hc))) (λ Hc : c, or_intror (a b) Hc)))
theorem or_id (a : Bool) : (a a) = a theorem or_id (a : Bool) : a a ⟷ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2)) := boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2))
(assume H, or_introl H a) (assume H, or_introl H a)
theorem or_falsel (a : Bool) : (a false) = a theorem or_falsel (a : Bool) : a false ⟷ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2)) := boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2))
(assume H, or_introl H false) (assume H, or_introl H false)
theorem or_falser (a : Bool) : (false a) = a theorem or_falser (a : Bool) : false a ⟷ a
:= (or_comm false a) ⋈ (or_falsel a) := (or_comm false a) ⋈ (or_falsel a)
theorem or_truel (a : Bool) : (true a) = true theorem or_truel (a : Bool) : true a ⟷ true
:= eqt_intro (case (λ x : Bool, true x) trivial trivial a) := eqt_intro (case (λ x : Bool, true x) trivial trivial a)
theorem or_truer (a : Bool) : (a true) = true theorem or_truer (a : Bool) : a true ⟷ true
:= (or_comm a true) ⋈ (or_truel a) := (or_comm a true) ⋈ (or_truel a)
theorem or_tauto (a : Bool) : (a ¬ a) = true theorem or_tauto (a : Bool) : a ¬ a ⟷ true
:= eqt_intro (em a) := eqt_intro (em a)
theorem and_comm (a b : Bool) : (a ∧ b) = (b ∧ a) theorem and_comm (a b : Bool) : a ∧ b ⟷ b ∧ a
:= boolext (assume H, and_intro (and_elimr H) (and_eliml H)) := boolext (assume H, and_intro (and_elimr H) (and_eliml H))
(assume H, and_intro (and_elimr H) (and_eliml H)) (assume H, and_intro (and_elimr H) (and_eliml H))
theorem and_id (a : Bool) : (a ∧ a) = a theorem and_id (a : Bool) : a ∧ a ⟷ a
:= boolext (assume H, and_eliml H) := boolext (assume H, and_eliml H)
(assume H, and_intro H H) (assume H, and_intro H H)
theorem and_assoc (a b c : Bool) : ((a ∧ b) ∧ c) = (a ∧ (b ∧ c)) theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c ⟷ a ∧ (b ∧ c)
:= boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H))) := boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H)))
(assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H))) (assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H)))
theorem and_truer (a : Bool) : (a ∧ true) = a theorem and_truer (a : Bool) : a ∧ true ⟷ a
:= boolext (assume H : a ∧ true, and_eliml H) := boolext (assume H : a ∧ true, and_eliml H)
(assume H : a, and_intro H trivial) (assume H : a, and_intro H trivial)
theorem and_truel (a : Bool) : (true ∧ a) = a theorem and_truel (a : Bool) : true ∧ a ⟷ a
:= trans (and_comm true a) (and_truer a) := trans (and_comm true a) (and_truer a)
theorem and_falsel (a : Bool) : (a ∧ false) = false theorem and_falsel (a : Bool) : a ∧ false ⟷ false
:= boolext (assume H, and_elimr H) := boolext (assume H, and_elimr H)
(assume H, false_elim (a ∧ false) H) (assume H, false_elim (a ∧ false) H)
theorem and_falser (a : Bool) : (false ∧ a) = false theorem and_falser (a : Bool) : false ∧ a ⟷ false
:= (and_comm false a) ⋈ (and_falsel a) := (and_comm false a) ⋈ (and_falsel a)
theorem and_absurd (a : Bool) : (a ∧ ¬ a) = false theorem and_absurd (a : Bool) : a ∧ ¬ a ⟷ false
:= boolext (assume H, absurd (and_eliml H) (and_elimr H)) := boolext (assume H, absurd (and_eliml H) (and_elimr H))
(assume H, false_elim (a ∧ ¬ a) H) (assume H, false_elim (a ∧ ¬ a) H)
theorem imp_truer (a : Bool) : (a → true) = true theorem imp_truer (a : Bool) : (a → true) true
:= case (λ x, (x → true) = true) trivial trivial a := case (λ x, (x → true) true) trivial trivial a
theorem imp_truel (a : Bool) : (true → a) = a theorem imp_truel (a : Bool) : (true → a) a
:= case (λ x, (true → x) = x) trivial trivial a := case (λ x, (true → x) x) trivial trivial a
theorem imp_falser (a : Bool) : (a → false) = ¬ a theorem imp_falser (a : Bool) : (a → false) ¬ a
:= refl _ := refl _
theorem imp_falsel (a : Bool) : (false → a) = true theorem imp_falsel (a : Bool) : (false → a) true
:= case (λ x, (false → x) = true) trivial trivial a := case (λ x, (false → x) true) trivial trivial a
theorem not_and (a b : Bool) : (¬ (a ∧ b)) = (¬ a ¬ b) theorem not_and (a b : Bool) : ¬ (a ∧ b) ⟷ ¬ a ¬ b
:= case (λ x, (¬ (x ∧ b)) = (¬ x ¬ b)) := case (λ x, ¬ (x ∧ b) ⟷ ¬ x ¬ b)
(case (λ y, (¬ (true ∧ y)) = (¬ true ¬ y)) trivial trivial b) (case (λ y, ¬ (true ∧ y) ⟷ ¬ true ¬ y) trivial trivial b)
(case (λ y, (¬ (false ∧ y)) = (¬ false ¬ y)) trivial trivial b) (case (λ y, ¬ (false ∧ y) ⟷ ¬ false ¬ y) trivial trivial b)
a a
theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b
:= (not_and a b) ◂ H := (not_and a b) ◂ H
theorem not_or (a b : Bool) : (¬ (a b)) = (¬ a ∧ ¬ b) theorem not_or (a b : Bool) : ¬ (a b) ⟷ ¬ a ∧ ¬ b
:= case (λ x, (¬ (x b)) = (¬ x ∧ ¬ b)) := case (λ x, ¬ (x b) ⟷ ¬ x ∧ ¬ b)
(case (λ y, (¬ (true y)) = (¬ true ∧ ¬ y)) trivial trivial b) (case (λ y, ¬ (true y) ⟷ ¬ true ∧ ¬ y) trivial trivial b)
(case (λ y, (¬ (false y)) = (¬ false ∧ ¬ y)) trivial trivial b) (case (λ y, ¬ (false y) ⟷ ¬ false ∧ ¬ y) trivial trivial b)
a a
theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b
:= (not_or a b) ◂ H := (not_or a b) ◂ H
theorem not_iff (a b : Bool) : (¬ (a = b)) = ((¬ a) = b) theorem not_iff (a b : Bool) : ¬ (a ⟷ b) ⟷ (¬ a ⟷ b)
:= case (λ x, (¬ (x = b)) = ((¬ x) = b)) := case (λ x, ¬ (x ⟷ b) ⟷ ((¬ x) ⟷ b))
(case (λ y, (¬ (true = y)) = ((¬ true) = y)) trivial trivial b) (case (λ y, ¬ (true ⟷ y) ⟷ ((¬ true) ⟷ y)) trivial trivial b)
(case (λ y, (¬ (false = y)) = ((¬ false) = y)) trivial trivial b) (case (λ y, ¬ (false ⟷ y) ⟷ ((¬ false) ⟷ y)) trivial trivial b)
a a
theorem not_iff_elim {a b : Bool} (H : ¬ (a = b)) : (¬ a) = b theorem not_iff_elim {a b : Bool} (H : ¬ (a ⟷ b)) : (¬ a) ⟷ b
:= (not_iff a b) ◂ H := (not_iff a b) ◂ H
theorem not_implies (a b : Bool) : (¬ (a → b)) = (a ∧ ¬ b) theorem not_implies (a b : Bool) : ¬ (a → b) ⟷ a ∧ ¬ b
:= case (λ x, (¬ (x → b)) = (x ∧ ¬ b)) := case (λ x, ¬ (x → b) ⟷ x ∧ ¬ b)
(case (λ y, (¬ (true → y)) = (true ∧ ¬ y)) trivial trivial b) (case (λ y, ¬ (true → y) ⟷ true ∧ ¬ y) trivial trivial b)
(case (λ y, (¬ (false → y)) = (false ∧ ¬ y)) trivial trivial b) (case (λ y, ¬ (false → y) ⟷ false ∧ ¬ y) trivial trivial b)
a a
theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b
:= (not_implies a b) ◂ H := (not_implies a b) ◂ H
theorem not_congr {a b : Bool} (H : a = b) : (¬ a) = (¬ b) theorem not_congr {a b : Bool} (H : a ⟷ b) : ¬ a ⟷ ¬ b
:= congr2 not H := congr2 not H
theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x = Q x) : (∃ x : A, P x) = (∃ x : A, Q x) theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ⟷ Q x) : (∃ x : A, P x) ⟷ (∃ x : A, Q x)
:= congr2 (Exists A) (funext H) := congr2 (Exists A) (funext H)
theorem not_forall (A : (Type U)) (P : A → Bool) : (¬ (∀ x : A, P x)) = (∃ x : A, ¬ P x) theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) ⟷ (∃ x : A, ¬ P x)
:= calc (¬ ∀ x : A, P x) = (¬ ∀ x : A, ¬ ¬ P x) : not_congr (allext (λ x : A, symm (not_not_eq (P x)))) := calc (¬ ∀ x : A, P x) = ¬ ∀ x : A, ¬ ¬ P x : not_congr (allext (λ x : A, symm (not_not_eq (P x))))
... = (∃ x : A, ¬ P x) : refl (∃ x : A, ¬ P x) ... = ∃ x : A, ¬ P x : refl (∃ x : A, ¬ P x)
theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not_forall A P) ◂ H := (not_forall A P) ◂ H
theorem not_exists (A : (Type U)) (P : A → Bool) : (¬ ∃ x : A, P x) = (∀ x : A, ¬ P x) theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) ⟷ (∀ x : A, ¬ P x)
:= calc (¬ ∃ x : A, P x) = (¬ ¬ ∀ x : A, ¬ P x) : refl (¬ ∃ x : A, P x) := calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x)
... = (∀ x : A, ¬ P x) : not_not_eq (∀ x : A, ¬ P x) ... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x)
theorem not_exists_elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x theorem not_exists_elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x
:= (not_exists A P) ◂ H := (not_exists A P) ◂ H
@ -373,7 +378,7 @@ theorem exists_unfold2 {A : TypeU} {P : A → Bool} (a : A) (H : P a (∃ x
(λ (w : A) (Hw : w ≠ a ∧ P w), (λ (w : A) (Hw : w ≠ a ∧ P w),
exists_intro w (and_elimr Hw))) exists_intro w (and_elimr Hw)))
theorem exists_unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a (∃ x : A, x ≠ a ∧ P x)) theorem exists_unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) (P a (∃ x : A, x ≠ a ∧ P x))
:= boolext (assume H : (∃ x : A, P x), exists_unfold1 a H) := boolext (assume H : (∃ x : A, P x), exists_unfold1 a H)
(assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H) (assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H)
@ -385,10 +390,10 @@ theorem left_comm {A : TypeU} {R : A -> A -> A} (comm : ∀ x y, R x y = R y x)
... = R (R y x) z : { comm x y } ... = R (R y x) z : { comm x y }
... = R y (R x z) : assoc y x z ... = R y (R x z) : assoc y x z
theorem and_left_comm (a b c : Bool) : (a ∧ (b ∧ c)) = (b ∧ (a ∧ c)) theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) ⟷ b ∧ (a ∧ c)
:= left_comm and_comm and_assoc a b c := left_comm and_comm and_assoc a b c
theorem or_left_comm (a b c : Bool) : (a (b c)) = (b (a c)) theorem or_left_comm (a b c : Bool) : a (b c) ⟷ b (a c)
:= left_comm or_comm or_assoc a b c := left_comm or_comm or_assoc a b c
-- Congruence theorems for contextual simplification -- Congruence theorems for contextual simplification
@ -458,24 +463,24 @@ theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d)
:= imp_congrr (λ H, H_ac) H_bd := imp_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact that a b is defined as ¬ a → b -- In the following theorems we are using the fact that a b is defined as ¬ a → b
theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : (a b) = (c d) theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ⟷ c d
:= imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd := imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd
theorem or_congrl {a b c d : Bool} (H_ac : ∀ (H_nd : ¬ d), a = c) (H_bd : ∀ (H_na : ¬ a), b = d) : (a b) = (c d) theorem or_congrl {a b c d : Bool} (H_ac : ∀ (H_nd : ¬ d), a = c) (H_bd : ∀ (H_na : ¬ a), b = d) : a b ⟷ c d
:= imp_congrl (λ H_nd : ¬ d, congr2 not (H_ac H_nd)) H_bd := imp_congrl (λ H_nd : ¬ d, congr2 not (H_ac H_nd)) H_bd
-- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true -- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true
theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : (a b) = (c d) theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ⟷ c d
:= or_congrr (λ H, H_ac) H_bd := or_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b) -- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b)
theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a ∧ b) = (c ∧ d) theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ⟷ c ∧ d
:= congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c))) := congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c)))
theorem and_congrl {a b c d : Bool} (H_ac : ∀ (H_d : d), a = c) (H_bd : ∀ (H_a : a), b = d) : (a ∧ b) = (c ∧ d) theorem and_congrl {a b c d : Bool} (H_ac : ∀ (H_d : d), a = c) (H_bd : ∀ (H_a : a), b = d) : a ∧ b ⟷ c ∧ d
:= congr2 not (imp_congrl (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)) (λ H_a : a, congr2 not (H_bd H_a))) := congr2 not (imp_congrl (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)) (λ H_a : a, congr2 not (H_bd H_a)))
-- (Common case) simplify a to c, and then b to d using the fact that c is true -- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a ∧ b) = (c ∧ d) theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ⟷ c ∧ d
:= and_congrr (λ H, H_ac) H_bd := and_congrr (λ H, H_ac) H_bd
theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) = (p ∀ x, φ x) theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) ⟷ p ∀ x, φ x
:= boolext := boolext
(assume H : (∀ x, p φ x), (assume H : (∀ x, p φ x),
or_elim (em p) or_elim (em p)
@ -488,19 +493,19 @@ theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x,
(λ H1 : p, or_introl H1 (φ x)) (λ H1 : p, or_introl H1 (φ x))
(λ H2 : (∀ x, φ x), or_intror p (H2 x))) (λ H2 : (∀ x, φ x), or_intror p (H2 x)))
theorem forall_or_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) = ((∀ x, φ x) p) theorem forall_or_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) ⟷ (∀ x, φ x) p
:= calc (∀ x, φ x p) = (∀ x, p φ x) : allext (λ x, or_comm (φ x) p) := calc (∀ x, φ x p) = (∀ x, p φ x) : allext (λ x, or_comm (φ x) p)
... = (p ∀ x, φ x) : forall_or_distributer p φ ... = (p ∀ x, φ x) : forall_or_distributer p φ
... = ((∀ x, φ x) p) : or_comm p (∀ x, φ x) ... = ((∀ x, φ x) p) : or_comm p (∀ x, φ x)
theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) = ((∀ x, φ x) ∧ (∀ x, ψ x)) theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) ⟷ (∀ x, φ x) ∧ (∀ x, ψ x)
:= boolext := boolext
(assume H : (∀ x, φ x ∧ ψ x), (assume H : (∀ x, φ x ∧ ψ x),
and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x))) and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x)))
(assume H : (∀ x, φ x) ∧ (∀ x, ψ x), (assume H : (∀ x, φ x) ∧ (∀ x, ψ x),
take x, and_intro (and_eliml H x) (and_elimr H x)) take x, and_intro (and_eliml H x) (and_elimr H x))
theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) = (p ∧ ∃ x, φ x) theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) ⟷ p ∧ ∃ x, φ x
:= boolext := boolext
(assume H : (∃ x, p ∧ φ x), (assume H : (∃ x, p ∧ φ x),
obtain (w : A) (Hw : p ∧ φ w), from H, obtain (w : A) (Hw : p ∧ φ w), from H,
@ -509,12 +514,12 @@ theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x
obtain (w : A) (Hw : φ w), from (and_elimr H), obtain (w : A) (Hw : φ w), from (and_elimr H),
exists_intro w (and_intro (and_eliml H) Hw)) exists_intro w (and_intro (and_eliml H) Hw))
theorem exists_and_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) = ((∃ x, φ x) ∧ p) theorem exists_and_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) ⟷ (∃ x, φ x) ∧ p
:= calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p) := calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p)
... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ ... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ
... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x) ... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x)
theorem exists_or_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x ψ x) = ((∃ x, φ x) (∃ x, ψ x)) theorem exists_or_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x ψ x) ⟷ (∃ x, φ x) (∃ x, ψ x)
:= boolext := boolext
(assume H : (∃ x, φ x ψ x), (assume H : (∃ x, φ x ψ x),
obtain (w : A) (Hw : φ w ψ w), from H, obtain (w : A) (Hw : φ w ψ w), from H,

Binary file not shown.

View file

@ -28,7 +28,7 @@
'(("\\_<\\(Bool\\|Int\\|Nat\\|Real\\|Type\\|TypeU\\|\\|\\)\\_>" . 'font-lock-type-face) '(("\\_<\\(Bool\\|Int\\|Nat\\|Real\\|Type\\|TypeU\\|\\|\\)\\_>" . 'font-lock-type-face)
("\\_<\\(calc\\|have\\|in\\|let\\|forall\\|exists\\|if\\|then\\|else\\|assume\\|take\\|obtain\\|from\\)\\_>" . font-lock-keyword-face) ("\\_<\\(calc\\|have\\|in\\|let\\|forall\\|exists\\|if\\|then\\|else\\|assume\\|take\\|obtain\\|from\\)\\_>" . font-lock-keyword-face)
("\"[^\"]*\"" . 'font-lock-string-face) ("\"[^\"]*\"" . 'font-lock-string-face)
("\\(->\\|/\\\\\\|==\\|\\\\/\\|[*+/<=>¬∧∨≠≤≥-]\\)" . 'font-lock-constant-face) ("\\(->\\|/\\\\\\|==\\|\\\\/\\|[*+/<=>¬∧∨≠≤≥-]\\)" . 'font-lock-constant-face)
("\\\\|→\\|∃\\|∀\\|:\\|:=\\)" . font-lock-constant-face) ("\\\\|→\\|∃\\|∀\\|:\\|:=\\)" . font-lock-constant-face)
("\\_<\\(\\b.*_tac\\|Cond\\|OrElse\\|T\\(?:hen\\|ry\\)\\|When\\|apply\\|b\\(?:ack\\|eta\\)\\|done\\|exact\\)\\_>" . 'font-lock-constant-face) ("\\_<\\(\\b.*_tac\\|Cond\\|OrElse\\|T\\(?:hen\\|ry\\)\\|When\\|apply\\|b\\(?:ack\\|eta\\)\\|done\\|exact\\)\\_>" . 'font-lock-constant-face)
("\\(universe\\|theorem\\|axiom\\|definition\\|variable\\|builtin\\)[ \t]*\\([^ \t\n]*\\)" (2 'font-lock-function-name-face)) ("\\(universe\\|theorem\\|axiom\\|definition\\|variable\\|builtin\\)[ \t]*\\([^ \t\n]*\\)" (2 'font-lock-function-name-face))

View file

@ -12,6 +12,7 @@ MK_CONSTANT(not_fn, name("not"));
MK_CONSTANT(or_fn, name("or")); MK_CONSTANT(or_fn, name("or"));
MK_CONSTANT(and_fn, name("and")); MK_CONSTANT(and_fn, name("and"));
MK_CONSTANT(implies_fn, name("implies")); MK_CONSTANT(implies_fn, name("implies"));
MK_CONSTANT(iff_fn, name("iff"));
MK_CONSTANT(exists_fn, name("exists")); MK_CONSTANT(exists_fn, name("exists"));
MK_CONSTANT(eq_fn, name("eq")); MK_CONSTANT(eq_fn, name("eq"));
MK_CONSTANT(neq_fn, name("neq")); MK_CONSTANT(neq_fn, name("neq"));

View file

@ -25,6 +25,10 @@ expr mk_implies_fn();
bool is_implies_fn(expr const & e); bool is_implies_fn(expr const & e);
inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); } inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); }
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app({mk_implies_fn(), e1, e2}); } inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app({mk_implies_fn(), e1, e2}); }
expr mk_iff_fn();
bool is_iff_fn(expr const & e);
inline bool is_iff(expr const & e) { return is_app(e) && is_iff_fn(arg(e, 0)); }
inline expr mk_iff(expr const & e1, expr const & e2) { return mk_app({mk_iff_fn(), e1, e2}); }
expr mk_exists_fn(); expr mk_exists_fn();
bool is_exists_fn(expr const & e); bool is_exists_fn(expr const & e);
inline bool is_exists(expr const & e) { return is_app(e) && is_exists_fn(arg(e, 0)); } inline bool is_exists(expr const & e) { return is_app(e) && is_exists_fn(arg(e, 0)); }

View file

@ -1,6 +1,6 @@
add_library(library kernel_bindings.cpp deep_copy.cpp add_library(library kernel_bindings.cpp deep_copy.cpp
context_to_lambda.cpp placeholder.cpp expr_lt.cpp substitution.cpp context_to_lambda.cpp placeholder.cpp expr_lt.cpp substitution.cpp
fo_unify.cpp bin_op.cpp eq_heq.cpp io_state_stream.cpp printer.cpp fo_unify.cpp bin_op.cpp equality.cpp io_state_stream.cpp printer.cpp
hop_match.cpp ite.cpp) hop_match.cpp ite.cpp)
target_link_libraries(library ${LEAN_LIBS}) target_link_libraries(library ${LEAN_LIBS})

View file

@ -21,7 +21,7 @@ Author: Leonardo de Moura
#include "kernel/type_checker.h" #include "kernel/type_checker.h"
#include "kernel/update_expr.h" #include "kernel/update_expr.h"
#include "library/printer.h" #include "library/printer.h"
#include "library/eq_heq.h" #include "library/equality.h"
#include "library/elaborator/elaborator.h" #include "library/elaborator/elaborator.h"
#include "library/elaborator/elaborator_justification.h" #include "library/elaborator/elaborator_justification.h"
@ -1372,9 +1372,9 @@ class elaborator::imp {
r = process_metavar(c, b, a, false); r = process_metavar(c, b, a, false);
if (r != Continue) { return r == Processed; } if (r != Continue) { return r == Processed; }
if (is_eq_heq(a) && is_eq_heq(b)) { if (is_equality(a) && is_equality(b)) {
expr_pair p1 = eq_heq_args(a); expr_pair p1 = get_equality_args(a);
expr_pair p2 = eq_heq_args(b); expr_pair p2 = get_equality_args(b);
justification new_jst(new destruct_justification(c)); justification new_jst(new destruct_justification(c));
push_new_eq_constraint(ctx, p1.first, p2.first, new_jst); push_new_eq_constraint(ctx, p1.first, p2.first, new_jst);
push_new_eq_constraint(ctx, p1.second, p2.second, new_jst); push_new_eq_constraint(ctx, p1.second, p2.second, new_jst);

View file

@ -1,22 +0,0 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "library/expr_pair.h"
#include "kernel/kernel.h"
namespace lean {
bool is_eq_heq(expr const & e) {
return is_heq(e) || is_eq(e);
}
expr_pair eq_heq_args(expr const & e) {
lean_assert(is_heq(e) || is_eq(e));
if (is_heq(e))
return expr_pair(heq_lhs(e), heq_rhs(e));
else
return expr_pair(arg(e, 2), arg(e, 3));
}
}

44
src/library/equality.cpp Normal file
View file

@ -0,0 +1,44 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "library/expr_pair.h"
#include "kernel/kernel.h"
namespace lean {
bool is_equality(expr const & e) {
return is_eq(e) || is_iff(e) || is_heq(e);
}
bool is_equality(expr const & e, expr & lhs, expr & rhs) {
if (is_eq(e)) {
lhs = arg(e, 2);
rhs = arg(e, 3);
return true;
} else if (is_iff(e)) {
lhs = arg(e, 1);
rhs = arg(e, 2);
return true;
} else if (is_heq(e)) {
lhs = heq_lhs(e);
rhs = heq_rhs(e);
return true;
} else {
return false;
}
}
expr_pair get_equality_args(expr const & e) {
if (is_eq(e)) {
return mk_pair(arg(e, 2), arg(e, 3));
} else if (is_iff(e)) {
return mk_pair(arg(e, 1), arg(e, 2));
} else if (is_heq(e)) {
return mk_pair(heq_lhs(e), heq_rhs(e));
} else {
lean_unreachable(); // LCOV_EXCL_LINE
}
}
}

View file

@ -8,6 +8,7 @@ Author: Leonardo de Moura
#include "library/expr_pair.h" #include "library/expr_pair.h"
namespace lean { namespace lean {
bool is_eq_heq(expr const & e); bool is_equality(expr const & e);
expr_pair eq_heq_args(expr const & e); bool is_equality(expr const & e, expr & lhs, expr & rhs);
expr_pair get_equality_args(expr const & e);
} }

View file

@ -9,7 +9,7 @@ Author: Leonardo de Moura
#include "library/fo_unify.h" #include "library/fo_unify.h"
#include "library/expr_pair.h" #include "library/expr_pair.h"
#include "library/kernel_bindings.h" #include "library/kernel_bindings.h"
#include "library/eq_heq.h" #include "library/equality.h"
namespace lean { namespace lean {
static void assign(substitution & s, expr const & mvar, expr const & e) { static void assign(substitution & s, expr const & mvar, expr const & e) {
@ -36,9 +36,9 @@ optional<substitution> fo_unify(expr e1, expr e2) {
assign(s, e1, e2); assign(s, e1, e2);
} else if (is_metavar_wo_local_context(e2)) { } else if (is_metavar_wo_local_context(e2)) {
assign(s, e2, e1); assign(s, e2, e1);
} else if (is_eq_heq(e1) && is_eq_heq(e2)) { } else if (is_equality(e1) && is_equality(e2)) {
expr_pair p1 = eq_heq_args(e1); expr_pair p1 = get_equality_args(e1);
expr_pair p2 = eq_heq_args(e2); expr_pair p2 = get_equality_args(e2);
todo.emplace_back(p1.second, p2.second); todo.emplace_back(p1.second, p2.second);
todo.emplace_back(p1.first, p2.first); todo.emplace_back(p1.first, p2.first);
} else { } else {

View file

@ -8,7 +8,8 @@ Author: Leonardo de Moura
#include "util/buffer.h" #include "util/buffer.h"
#include "kernel/free_vars.h" #include "kernel/free_vars.h"
#include "kernel/instantiate.h" #include "kernel/instantiate.h"
#include "library/eq_heq.h" #include "kernel/kernel.h"
#include "library/equality.h"
#include "library/kernel_bindings.h" #include "library/kernel_bindings.h"
namespace lean { namespace lean {
@ -183,13 +184,13 @@ class hop_match_fn {
return true; return true;
} }
if (is_eq_heq(p) && is_eq_heq(t) && (is_heq(p) || is_heq(t))) { if (is_equality(p) && is_equality(t) && (!is_eq(p) || !is_eq(t))) {
// Remark: if p and t are homogeneous equality, then we handle as an application (in the else branch) // Remark: if p and t are homogeneous equality, then we handle as an application (in the else branch)
// We do that because we can get more information. For example, the pattern // We do that because we can get more information. For example, the pattern
// may be (eq #1 a b). // may be (eq #1 a b).
// This branch ignores the type. // This branch ignores the type.
expr_pair p1 = eq_heq_args(p); expr_pair p1 = get_equality_args(p);
expr_pair p2 = eq_heq_args(t); expr_pair p2 = get_equality_args(t);
return match(p1.first, p2.first, ctx, ctx_size) && match(p1.second, p2.second, ctx, ctx_size); return match(p1.first, p2.first, ctx, ctx_size) && match(p1.second, p2.second, ctx, ctx_size);
} else { } else {
if (p.kind() != t.kind()) if (p.kind() != t.kind())

View file

@ -11,6 +11,7 @@ Author: Leonardo de Moura
#include "library/expr_pair.h" #include "library/expr_pair.h"
#include "library/ite.h" #include "library/ite.h"
#include "library/kernel_bindings.h" #include "library/kernel_bindings.h"
#include "library/equality.h"
namespace lean { namespace lean {
static name g_Hc("Hc"); // auxiliary name for if-then-else static name g_Hc("Hc"); // auxiliary name for if-then-else
@ -44,18 +45,18 @@ class to_ceqs_fn {
} }
list<expr_pair> apply(expr const & e, expr const & H) { list<expr_pair> apply(expr const & e, expr const & H) {
if (is_eq(e)) { if (is_equality(e)) {
return mk_singleton(e, H); return mk_singleton(e, H);
} else if (is_neq(e)) { } else if (is_neq(e)) {
expr T = arg(e, 1); expr T = arg(e, 1);
expr lhs = arg(e, 2); expr lhs = arg(e, 2);
expr rhs = arg(e, 3); expr rhs = arg(e, 3);
expr new_e = mk_eq(Bool, mk_eq(T, lhs, rhs), False); expr new_e = mk_iff(mk_eq(T, lhs, rhs), False);
expr new_H = mk_neq_elim_th(T, lhs, rhs, H); expr new_H = mk_neq_elim_th(T, lhs, rhs, H);
return mk_singleton(new_e, new_H); return mk_singleton(new_e, new_H);
} else if (is_not(e)) { } else if (is_not(e)) {
expr a = arg(e, 1); expr a = arg(e, 1);
expr new_e = mk_eq(Bool, a, False); expr new_e = mk_iff(a, False);
expr new_H = mk_eqf_intro_th(a, H); expr new_H = mk_eqf_intro_th(a, H);
return mk_singleton(new_e, new_H); return mk_singleton(new_e, new_H);
} else if (is_and(e)) { } else if (is_and(e)) {
@ -99,7 +100,7 @@ class to_ceqs_fn {
}); });
return append(new_then_ceqs, new_else_ceqs); return append(new_then_ceqs, new_else_ceqs);
} else { } else {
return mk_singleton(mk_eq(Bool, e, True), mk_eqt_intro_th(e, H)); return mk_singleton(mk_iff(e, True), mk_eqt_intro_th(e, H));
} }
} }
public: public:
@ -146,8 +147,8 @@ bool is_ceq(ro_environment const & env, expr e) {
ctx = extend(ctx, abst_name(e), abst_domain(e)); ctx = extend(ctx, abst_name(e), abst_domain(e));
e = abst_body(e); e = abst_body(e);
} }
if (is_eq(e)) { expr lhs, rhs;
expr lhs = arg(e, 2); if (is_equality(e, lhs, rhs)) {
// traverse lhs, and mark all variables that occur there in is_lhs. // traverse lhs, and mark all variables that occur there in is_lhs.
for_each(lhs, visitor_fn); for_each(lhs, visitor_fn);
return std::find(found_args.begin(), found_args.end(), false) == found_args.end(); return std::find(found_args.begin(), found_args.end(), false) == found_args.end();
@ -211,13 +212,14 @@ bool is_permutation_ceq(expr e) {
e = abst_body(e); e = abst_body(e);
num_args++; num_args++;
} }
if (!is_eq(e)) expr lhs, rhs;
return false; if (is_equality(e, lhs, rhs)) {
expr lhs = arg(e, 2);
expr rhs = arg(e, 3);
buffer<optional<unsigned>> permutation; buffer<optional<unsigned>> permutation;
permutation.resize(num_args); permutation.resize(num_args);
return is_permutation(lhs, rhs, 0, permutation); return is_permutation(lhs, rhs, 0, permutation);
} else {
return false;
}
} }
static int to_ceqs(lua_State * L) { static int to_ceqs(lua_State * L) {