style(library/data): clean up proofs in pnat and real
This commit is contained in:
parent
82a9bc757a
commit
4dd4d7b3b8
5 changed files with 105 additions and 257 deletions
|
@ -284,4 +284,35 @@ theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻
|
|||
((div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha))⁻¹ ▸
|
||||
!rat.one_mul⁻¹ ▸ !ubound_ge)
|
||||
|
||||
theorem sep_by_inv {a b : ℚ} (H : a > b) : ∃ N : ℕ+, a > (b + N⁻¹ + N⁻¹) :=
|
||||
begin
|
||||
apply exists.elim (find_midpoint H),
|
||||
intro c Hc,
|
||||
existsi (pceil ((1 + 1 + 1) / c)),
|
||||
apply rat.lt.trans,
|
||||
rotate 1,
|
||||
apply and.left Hc,
|
||||
rewrite rat.add.assoc,
|
||||
apply rat.add_lt_add_left,
|
||||
rewrite -(@rat.add_halves c) at {3},
|
||||
apply rat.add_lt_add,
|
||||
repeat (apply rat.lt_of_le_of_lt;
|
||||
apply inv_pceil_div;
|
||||
apply dec_trivial;
|
||||
apply and.right Hc;
|
||||
apply div_lt_div_of_pos_of_lt_of_pos;
|
||||
repeat (apply two_pos);
|
||||
apply and.right Hc)
|
||||
end
|
||||
|
||||
theorem nonneg_of_ge_neg_invs (a : ℚ) (H : ∀ n : ℕ+, -n⁻¹ ≤ a) : 0 ≤ a :=
|
||||
rat.le_of_not_gt (suppose a < 0,
|
||||
have H2 : 0 < -a, from neg_pos_of_neg this,
|
||||
(rat.not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc
|
||||
(pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2
|
||||
: !inv_pceil_div dec_trivial H2
|
||||
... < -a / 1
|
||||
: div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2
|
||||
... = -a : div_one)))
|
||||
|
||||
end pnat
|
||||
|
|
|
@ -15,28 +15,11 @@ open -[coercions] rat
|
|||
local notation 0 := rat.of_num 0
|
||||
local notation 1 := rat.of_num 1
|
||||
----------------------------------------------------------------------------------------------------
|
||||
-- small helper lemmas
|
||||
|
||||
-------------------------------------
|
||||
-- theorems to add to (ordered) field and/or rat
|
||||
|
||||
-- this can move to pnat
|
||||
theorem find_midpoint {a b : ℚ} (H : a > b) : ∃ c : ℚ, a > b + c ∧ c > 0 :=
|
||||
exists.intro ((a - b) / (1 + 1))
|
||||
(and.intro (assert H2 : a + a > (b + b) + (a - b), from calc
|
||||
a + a > b + a : rat.add_lt_add_right H
|
||||
... = b + a + b - b : rat.add_sub_cancel
|
||||
... = b + b + a - b : rat.add.right_comm
|
||||
... = (b + b) + (a - b) : add_sub,
|
||||
assert H3 : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1),
|
||||
from div_lt_div_of_lt_of_pos H2 dec_trivial,
|
||||
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
|
||||
(pos_div_of_pos_of_pos (iff.mpr !sub_pos_iff_lt H) dec_trivial))
|
||||
|
||||
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) :=
|
||||
calc
|
||||
a + b - (c + d) = a + b - c - d : sub_add_eq_sub_sub
|
||||
... = a - c + b - d : sub_add_eq_add_sub
|
||||
... = a - c + (b - d) : add_sub
|
||||
theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) :
|
||||
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ :=
|
||||
by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv]
|
||||
|
||||
theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
|
||||
q * n⁻¹ ≤ ε :=
|
||||
|
@ -48,13 +31,6 @@ theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0)
|
|||
repeat assumption
|
||||
end
|
||||
|
||||
-------------------------------------
|
||||
-- small helper lemmas
|
||||
|
||||
theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) :
|
||||
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ :=
|
||||
by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv]
|
||||
|
||||
theorem find_thirds (a b : ℚ) (H : b > 0) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b :=
|
||||
let n := pceil (of_nat 4 / b) in
|
||||
have of_nat 3 * n⁻¹ < b, from calc
|
||||
|
@ -152,7 +128,6 @@ infix `≡` := equiv
|
|||
|
||||
theorem equiv.refl (s : seq) : s ≡ s :=
|
||||
begin
|
||||
rewrite ↑equiv,
|
||||
intros,
|
||||
rewrite [rat.sub_self, abs_zero],
|
||||
apply add_invs_nonneg
|
||||
|
@ -160,7 +135,6 @@ theorem equiv.refl (s : seq) : s ≡ s :=
|
|||
|
||||
theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s :=
|
||||
begin
|
||||
rewrite ↑equiv at *,
|
||||
intros,
|
||||
rewrite [-abs_neg, neg_sub],
|
||||
exact H n
|
||||
|
@ -169,7 +143,6 @@ theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s :=
|
|||
theorem bdd_of_eq {s t : seq} (H : s ≡ t) :
|
||||
∀ j : ℕ+, ∀ n : ℕ+, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ :=
|
||||
begin
|
||||
rewrite ↑equiv at *,
|
||||
intros [j, n, Hn],
|
||||
apply rat.le.trans,
|
||||
apply H n,
|
||||
|
@ -182,12 +155,10 @@ theorem bdd_of_eq {s t : seq} (H : s ≡ t) :
|
|||
theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
|
||||
(H : ∀ j : ℕ+, ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t :=
|
||||
begin
|
||||
rewrite ↑equiv,
|
||||
intros,
|
||||
have Hj : (∀ j : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹), begin
|
||||
intros,
|
||||
apply exists.elim (H j),
|
||||
intros [Nj, HNj],
|
||||
cases H j with [Nj, HNj],
|
||||
rewrite [-(rat.sub_add_cancel (s n) (s (max j Nj))), rat.add.assoc (s n + -s (max j Nj)),
|
||||
↑regular at *],
|
||||
apply rat.le.trans,
|
||||
|
@ -219,21 +190,19 @@ theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
|
|||
rat.add_le_add_left Hms
|
||||
... = n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹ : by rewrite *rat.add.assoc)
|
||||
end,
|
||||
apply (squeeze Hj)
|
||||
apply squeeze Hj
|
||||
end
|
||||
|
||||
theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t)
|
||||
(H : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t :=
|
||||
begin
|
||||
apply eq_of_bdd,
|
||||
apply Hs,
|
||||
apply Ht,
|
||||
repeat assumption,
|
||||
intros,
|
||||
apply H j⁻¹,
|
||||
apply inv_pos
|
||||
end
|
||||
|
||||
set_option pp.beta false
|
||||
theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε :=
|
||||
begin
|
||||
existsi (pceil (1 / ε)),
|
||||
|
@ -247,13 +216,11 @@ theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡
|
|||
∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε :=
|
||||
begin
|
||||
intro ε Hε,
|
||||
apply (exists.elim (pnat_bound Hε)),
|
||||
intro N HN,
|
||||
let Bd' := bdd_of_eq Heq N,
|
||||
cases pnat_bound Hε with [N, HN],
|
||||
existsi 2 * N,
|
||||
intro n Hn,
|
||||
apply rat.le.trans,
|
||||
apply Bd' n Hn,
|
||||
apply bdd_of_eq Heq N n Hn,
|
||||
assumption
|
||||
end
|
||||
|
||||
|
@ -500,36 +467,24 @@ theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu
|
|||
(Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) :=
|
||||
begin
|
||||
apply add_le_add_three,
|
||||
repeat apply rat.mul_le_mul,
|
||||
apply Kq_bound Ht,
|
||||
apply Kq_bound Hu,
|
||||
apply abs_nonneg,
|
||||
apply Kq_bound_nonneg Ht,
|
||||
repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg |
|
||||
apply abs_nonneg),
|
||||
apply Hs,
|
||||
apply abs_nonneg,
|
||||
apply rat.mul_nonneg,
|
||||
apply Kq_bound_nonneg Ht,
|
||||
apply Kq_bound_nonneg Hu,
|
||||
repeat (apply Kq_bound_nonneg | assumption),
|
||||
repeat apply rat.mul_le_mul,
|
||||
apply Kq_bound Hs,
|
||||
apply Kq_bound Ht,
|
||||
apply abs_nonneg,
|
||||
apply Kq_bound_nonneg Hs,
|
||||
repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg |
|
||||
apply abs_nonneg),
|
||||
apply Hu,
|
||||
apply abs_nonneg,
|
||||
apply rat.mul_nonneg,
|
||||
apply Kq_bound_nonneg Hs,
|
||||
apply Kq_bound_nonneg Ht,
|
||||
repeat apply rat.mul_le_mul,
|
||||
apply Kq_bound Hs,
|
||||
apply Kq_bound Hu,
|
||||
apply abs_nonneg,
|
||||
apply Kq_bound_nonneg Hs,
|
||||
repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg |
|
||||
apply abs_nonneg),
|
||||
apply Ht,
|
||||
apply abs_nonneg,
|
||||
apply rat.mul_nonneg,
|
||||
apply Kq_bound_nonneg Hs,
|
||||
apply Kq_bound_nonneg Hu
|
||||
repeat (apply Kq_bound_nonneg; assumption)
|
||||
end
|
||||
|
||||
theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) :
|
||||
|
@ -543,8 +498,7 @@ theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regula
|
|||
apply reg_mul_reg Hs,
|
||||
apply reg_mul_reg Ht Hu,
|
||||
intros,
|
||||
fapply exists.intro,
|
||||
rotate 1,
|
||||
apply exists.intro,
|
||||
intros,
|
||||
rewrite [↑smul, *DK_rewrite, *TK_rewrite, -*pnat.mul.assoc, -*rat.mul.assoc],
|
||||
apply rat.le.trans,
|
||||
|
@ -622,13 +576,7 @@ theorem neg_s_cancel (s : seq) (H : regular s) : sadd s (sneg s) ≡ zero :=
|
|||
rotate 3,
|
||||
apply s_add_comm,
|
||||
apply s_neg_cancel s H,
|
||||
apply reg_add_reg,
|
||||
apply H,
|
||||
apply reg_neg_reg,
|
||||
apply H,
|
||||
apply reg_add_reg,
|
||||
apply reg_neg_reg,
|
||||
repeat apply H,
|
||||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption),
|
||||
apply zero_is_reg
|
||||
end
|
||||
|
||||
|
@ -757,8 +705,7 @@ theorem mul_zero_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Htz :
|
|||
intro ε Hε,
|
||||
let Bd := bdd_of_eq_var Ht zero_is_reg Htz (ε / (Kq s))
|
||||
(pos_div_of_pos_of_pos Hε (Kq_bound_pos Hs)),
|
||||
apply exists.elim Bd,
|
||||
intro N HN,
|
||||
cases Bd with [N, HN],
|
||||
existsi N,
|
||||
intro n Hn,
|
||||
rewrite [↑equiv at Htz, ↑zero at *, rat.sub_zero, ↑smul, abs_mul],
|
||||
|
@ -832,18 +779,15 @@ theorem s_sub_cancel (s : seq) : sadd s (sneg s) ≡ zero :=
|
|||
theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (H : s ≡ t) :
|
||||
sadd s (sneg t) ≡ zero :=
|
||||
begin
|
||||
let Hnt := reg_neg_reg Ht,
|
||||
let Hsnt := reg_add_reg Hs Hnt,
|
||||
let Htnt := reg_add_reg Ht Hnt,
|
||||
apply equiv.trans,
|
||||
rotate 4,
|
||||
apply s_sub_cancel t,
|
||||
rotate 2,
|
||||
apply zero_is_reg,
|
||||
apply add_well_defined,
|
||||
repeat assumption,
|
||||
repeat (assumption | apply reg_neg_reg),
|
||||
apply equiv.refl,
|
||||
repeat assumption
|
||||
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
|
||||
end
|
||||
|
||||
theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||||
|
@ -917,7 +861,6 @@ theorem one_is_reg : regular one :=
|
|||
|
||||
theorem s_one_mul {s : seq} (H : regular s) : smul one s ≡ s :=
|
||||
begin
|
||||
rewrite ↑equiv,
|
||||
intros,
|
||||
rewrite [↑smul, ↑one, rat.one_mul],
|
||||
apply rat.le.trans,
|
||||
|
@ -1158,9 +1101,7 @@ definition of_rat [coercion] (a : ℚ) : ℝ := quot.mk (s.r_const a)
|
|||
theorem of_rat_add (a b : ℚ) : of_rat a + of_rat b = of_rat (a + b) :=
|
||||
quot.sound (s.r_add_consts a b)
|
||||
|
||||
theorem of_rat_neg (a : ℚ) : -of_rat a = of_rat (-a) := quot.sound (s.r_neg_const a)
|
||||
|
||||
--theorem of_rat_sub (a b : ℚ) : of_rat a + - of_rat b = of_rat (a - b) := !of_rat_add
|
||||
theorem of_rat_neg (a : ℚ) : of_rat (-a) = -of_rat a := eq.symm (quot.sound (s.r_neg_const a))
|
||||
|
||||
theorem of_rat_mul (a b : ℚ) : of_rat a * of_rat b = of_rat (a * b) :=
|
||||
quot.sound (s.r_mul_consts a b)
|
||||
|
|
|
@ -44,10 +44,8 @@ theorem rat_approx {s : seq} (H : regular s) :
|
|||
begin
|
||||
intro m,
|
||||
rewrite ↑s_le,
|
||||
apply exists.elim (rat_approx_l1 H m),
|
||||
intro q Hq,
|
||||
apply exists.elim Hq,
|
||||
intro N HN,
|
||||
cases rat_approx_l1 H m with [q, Hq],
|
||||
cases Hq with [N, HN],
|
||||
existsi q,
|
||||
apply nonneg_of_bdd_within,
|
||||
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
|
||||
|
@ -106,10 +104,7 @@ theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) :
|
|||
end
|
||||
|
||||
theorem abs_const (a : ℚ) : const (abs a) ≡ s_abs (const a) :=
|
||||
begin
|
||||
rewrite [↑s_abs, ↑const],
|
||||
apply equiv.refl
|
||||
end
|
||||
by apply equiv.refl
|
||||
|
||||
theorem r_abs_const (a : ℚ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
|
||||
|
||||
|
@ -123,12 +118,10 @@ theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_a
|
|||
let Hz' := s_nonneg_of_ge_zero Hs Hz,
|
||||
existsi 2 * j,
|
||||
intro n Hn,
|
||||
apply or.elim (em (s n ≥ 0)),
|
||||
intro Hpos,
|
||||
cases em (s n ≥ 0) with [Hpos, Hneg],
|
||||
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
|
||||
apply rat.le_of_lt,
|
||||
apply inv_pos,
|
||||
intro Hneg,
|
||||
let Hneg' := lt_of_not_ge Hneg,
|
||||
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
|
||||
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
|
||||
|
@ -160,8 +153,7 @@ theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) :
|
|||
end,
|
||||
existsi 2 * j,
|
||||
intro n Hn,
|
||||
apply or.elim (em (s n ≥ 0)),
|
||||
intro Hpos,
|
||||
cases em (s n ≥ 0) with [Hpos, Hneg],
|
||||
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
|
||||
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
|
||||
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
|
||||
|
@ -173,7 +165,6 @@ theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) :
|
|||
repeat (apply inv_ge_of_le; apply Hn),
|
||||
rewrite pnat.add_halves,
|
||||
apply rat.le.refl,
|
||||
intro Hneg,
|
||||
let Hneg' := lt_of_not_ge Hneg,
|
||||
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
|
||||
abs_zero],
|
||||
|
@ -219,11 +210,8 @@ theorem re_abs_is_abs : re_abs = real.abs := funext
|
|||
(begin
|
||||
intro x,
|
||||
apply eq.symm,
|
||||
let Hor := em (zero ≤ x),
|
||||
apply or.elim Hor,
|
||||
intro Hor1,
|
||||
cases em (zero ≤ x) with [Hor1, Hor2],
|
||||
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
|
||||
intro Hor2,
|
||||
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2),
|
||||
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
|
||||
end)
|
||||
|
@ -320,29 +308,23 @@ theorem lim_seq_reg : s.regular lim_seq :=
|
|||
rewrite [abs_const, -of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
|
||||
apply real.le.trans,
|
||||
apply abs_add_three,
|
||||
let Hor := em (M (2 * m) ≥ M (2 * n)),
|
||||
apply or.elim Hor,
|
||||
intro Hor1,
|
||||
cases em (M (2 * m) ≥ M (2 * n)) with [Hor1, Hor2],
|
||||
apply lim_seq_reg_helper Hor1,
|
||||
intro Hor2,
|
||||
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
|
||||
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ???
|
||||
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub,
|
||||
rat.add.comm, add_comm_three],
|
||||
apply lim_seq_reg_helper Hor2'
|
||||
end
|
||||
|
||||
theorem lim_seq_spec (k : ℕ+) :
|
||||
s.s_le (s.s_abs (s.sadd lim_seq (s.sneg (s.const (lim_seq k))))) (s.const k⁻¹) :=
|
||||
begin
|
||||
apply s.const_bound,
|
||||
apply lim_seq_reg
|
||||
end
|
||||
by apply s.const_bound; apply lim_seq_reg
|
||||
|
||||
noncomputable definition r_lim_seq : s.reg_seq :=
|
||||
s.reg_seq.mk lim_seq lim_seq_reg
|
||||
|
||||
theorem r_lim_seq_spec (k : ℕ+) : s.r_le
|
||||
(s.r_abs ((s.radd r_lim_seq (s.rneg (s.r_const ((s.reg_seq.sq r_lim_seq) k))))))
|
||||
theorem r_lim_seq_spec (k : ℕ+) : s.r_le
|
||||
(s.r_abs ((s.radd r_lim_seq (s.rneg (s.r_const ((s.reg_seq.sq r_lim_seq) k))))))
|
||||
(s.r_const k⁻¹) :=
|
||||
lim_seq_spec k
|
||||
|
||||
|
@ -449,7 +431,7 @@ theorem archimedean' (x : ℝ) : ∃ z : ℤ, x ≥ of_rat (of_int z) :=
|
|||
begin
|
||||
cases archimedean (-x) with [z, Hz],
|
||||
existsi -z,
|
||||
rewrite [of_int_neg, -of_rat_neg], -- change the direction of of_rat_neg
|
||||
rewrite [of_int_neg, of_rat_neg],
|
||||
apply iff.mp !neg_le_iff_neg_le Hz
|
||||
end
|
||||
|
||||
|
@ -457,7 +439,7 @@ theorem archimedean_strict' (x : ℝ) : ∃ z : ℤ, x > of_rat (of_int z) :=
|
|||
begin
|
||||
cases archimedean_strict (-x) with [z, Hz],
|
||||
existsi -z,
|
||||
rewrite [of_int_neg, -of_rat_neg],
|
||||
rewrite [of_int_neg, of_rat_neg],
|
||||
apply iff.mp !neg_lt_iff_neg_lt Hz
|
||||
end
|
||||
|
||||
|
@ -570,7 +552,7 @@ theorem floor_largest {x : ℝ} {z : ℤ} (Hz : z > floor x) : x < of_rat (of_in
|
|||
|
||||
theorem ceil_spec (x : ℝ) : of_rat (of_int (ceil x)) ≥ x :=
|
||||
begin
|
||||
rewrite [↑ceil, of_int_neg, -of_rat_neg],
|
||||
rewrite [↑ceil, of_int_neg, of_rat_neg],
|
||||
apply iff.mp !le_neg_iff_le_neg,
|
||||
apply floor_spec
|
||||
end
|
||||
|
@ -579,7 +561,7 @@ theorem ceil_smallest {x : ℝ} {z : ℤ} (Hz : z < ceil x) : x > of_rat (of_int
|
|||
begin
|
||||
rewrite ↑ceil at Hz,
|
||||
let Hz' := floor_largest (iff.mp !int.lt_neg_iff_lt_neg Hz),
|
||||
rewrite [of_int_neg at Hz', -of_rat_neg at Hz'],
|
||||
rewrite [of_int_neg at Hz', of_rat_neg at Hz'],
|
||||
apply lt_of_neg_lt_neg Hz'
|
||||
end
|
||||
|
||||
|
@ -758,7 +740,7 @@ theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / (rat.pow 2
|
|||
let Hou := calc
|
||||
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 :
|
||||
by rewrite [rat.div_sub_div_same, Ha]
|
||||
... = (over - under) / (rat.pow 2 a * 2) :
|
||||
... = (over - under) / (rat.pow 2 a * 2) :
|
||||
rat.div_div_eq_div_mul (rat.ne_of_gt (rat.pow_pos dec_trivial _)) dec_trivial
|
||||
... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add,
|
||||
cases em (ub (avg_seq a)),
|
||||
|
@ -773,7 +755,7 @@ theorem binary_nat_bound (a : ℕ) : of_nat a ≤ (rat.pow 2 a) :=
|
|||
calc
|
||||
of_nat (succ n) = (of_nat n) + 1 : of_nat_add
|
||||
... ≤ rat.pow 2 n + 1 : rat.add_le_add_right Hn
|
||||
... ≤ rat.pow 2 n + rat.pow 2 n :
|
||||
... ≤ rat.pow 2 n + rat.pow 2 n :
|
||||
rat.add_le_add_left (rat.pow_ge_one_of_ge_one rat.two_ge_one _)
|
||||
... = rat.pow 2 (succ n) : rat.pow_two_add)
|
||||
|
||||
|
@ -1050,8 +1032,8 @@ end supremum
|
|||
|
||||
definition bounding_set (X : ℝ → Prop) (x : ℝ) : Prop := ∀ y : ℝ, X y → x ≤ y
|
||||
|
||||
theorem ex_inf_of_inh_of_bdd (X : ℝ → Prop) (elt : ℝ) (inh : X elt) (bound : ℝ)
|
||||
(bdd : lb X bound) : ∃ x : ℝ, inf X x :=
|
||||
theorem ex_inf_of_inh_of_bdd (X : ℝ → Prop) (elt : ℝ) (inh : X elt) (bound : ℝ)
|
||||
(bdd : lb X bound) : ∃ x : ℝ, inf X x :=
|
||||
begin
|
||||
have Hinh : bounding_set X bound, begin
|
||||
intros y Hy,
|
||||
|
|
|
@ -23,22 +23,6 @@ namespace s
|
|||
-----------------------------
|
||||
-- helper lemmas
|
||||
|
||||
theorem neg_add_rewrite {a b : ℚ} : a + -b = -(b + -a) :=
|
||||
by rewrite[neg_add_rev,neg_neg]
|
||||
|
||||
theorem abs_abs_sub_abs_le_abs_sub (a b : ℚ) : abs (abs a - abs b) ≤ abs (a - b) :=
|
||||
begin
|
||||
apply rat.nonneg_le_nonneg_of_squares_le,
|
||||
repeat apply abs_nonneg,
|
||||
rewrite [*abs_sub_square, *abs_abs, *abs_mul_self],
|
||||
apply sub_le_sub_left,
|
||||
rewrite *rat.mul.assoc,
|
||||
apply rat.mul_le_mul_of_nonneg_left,
|
||||
rewrite -abs_mul,
|
||||
apply le_abs_self,
|
||||
apply trivial
|
||||
end
|
||||
|
||||
theorem and_of_not_or {a b : Prop} (H : ¬ (a ∨ b)) : ¬ a ∧ ¬ b :=
|
||||
and.intro (assume H', H (or.inl H')) (assume H', H (or.inr H'))
|
||||
|
||||
|
@ -49,7 +33,6 @@ definition s_abs (s : seq) : seq := λ n, abs (s n)
|
|||
|
||||
theorem abs_reg_of_reg {s : seq} (Hs : regular s) : regular (s_abs s) :=
|
||||
begin
|
||||
rewrite ↑regular at *,
|
||||
intros,
|
||||
apply rat.le.trans,
|
||||
apply abs_abs_sub_abs_le_abs_sub,
|
||||
|
@ -70,9 +53,7 @@ theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) :
|
|||
apply s_zero_add,
|
||||
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
|
||||
end,
|
||||
let H'' := bdd_away_of_pos (reg_neg_reg Hs) H',
|
||||
apply exists.elim H'',
|
||||
intro N HN,
|
||||
cases bdd_away_of_pos (reg_neg_reg Hs) H' with [N, HN],
|
||||
existsi N,
|
||||
intro m Hm,
|
||||
apply rat.le.trans,
|
||||
|
@ -82,8 +63,7 @@ theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) :
|
|||
intro Hnz2,
|
||||
let H' := pos_of_pos_equiv (reg_add_reg Hs (reg_neg_reg zero_is_reg)) (s_add_zero s Hs) Hnz2,
|
||||
let H'' := bdd_away_of_pos Hs H',
|
||||
apply exists.elim H'',
|
||||
intro N HN,
|
||||
cases H'' with [N, HN],
|
||||
existsi N,
|
||||
intro m Hm,
|
||||
apply rat.le.trans,
|
||||
|
@ -93,9 +73,7 @@ theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) :
|
|||
|
||||
theorem sep_zero_of_pos {s : seq} (Hs : regular s) (Hpos : pos s) : sep s zero :=
|
||||
begin
|
||||
rewrite ↑sep,
|
||||
apply or.inr,
|
||||
rewrite ↑s_lt,
|
||||
apply pos_of_pos_equiv,
|
||||
rotate 2,
|
||||
apply Hpos,
|
||||
|
@ -211,14 +189,11 @@ theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_
|
|||
have Hspm : s ((ps Hs Hsep) * (ps Hs Hsep) * m) ≠ 0, from
|
||||
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * m ≥ ps Hs Hsep, by
|
||||
rewrite pnat.mul.assoc; apply pnat.mul_le_mul_right),
|
||||
apply @decidable.cases_on (m < (ps Hs Hsep)) _ _,
|
||||
intro Hmlt,
|
||||
apply @decidable.cases_on (n < (ps Hs Hsep)) _ _,
|
||||
intro Hnlt,
|
||||
cases em (m < ps Hs Hsep) with [Hmlt, Hmlt],
|
||||
cases em (n < ps Hs Hsep) with [Hnlt, Hnlt],
|
||||
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt), (s_inv_of_sep_lt_p Hs Hsep Hnlt)],
|
||||
rewrite [sub_self, abs_zero],
|
||||
apply add_invs_nonneg,
|
||||
intro Hnlt,
|
||||
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt),
|
||||
(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hnlt))],
|
||||
rewrite [(div_sub_div Hsp Hspn), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
|
||||
|
@ -240,9 +215,7 @@ theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_
|
|||
apply inv_ge_of_le,
|
||||
apply pnat.le_of_lt,
|
||||
apply Hmlt,
|
||||
intro Hmlt,
|
||||
apply @decidable.cases_on (n < (ps Hs Hsep)) _ _,
|
||||
intro Hnlt,
|
||||
cases em (n < ps Hs Hsep) with [Hnlt, Hnlt],
|
||||
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hnlt),
|
||||
(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt))],
|
||||
rewrite [(div_sub_div Hspm Hsp), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
|
||||
|
@ -264,7 +237,6 @@ theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_
|
|||
apply inv_ge_of_le,
|
||||
apply pnat.le_of_lt,
|
||||
apply Hnlt,
|
||||
intro Hnlt,
|
||||
rewrite [(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hnlt)),
|
||||
(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hmlt))],
|
||||
rewrite [(div_sub_div Hspm Hspn), div_eq_mul_one_div, abs_mul, *one_mul, *mul_one],
|
||||
|
@ -517,7 +489,7 @@ theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s :=
|
|||
let Hle' := iff.mp forall_iff_not_exists Hle,
|
||||
intro n,
|
||||
let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)),
|
||||
rewrite [↑sadd, ↑sneg, neg_add_rewrite],
|
||||
rewrite [↑sadd, ↑sneg, add_neg_eq_neg_add_rev],
|
||||
apply Hn
|
||||
end
|
||||
|
||||
|
|
|
@ -19,45 +19,6 @@ notation 2 := subtype.tag (of_num 2) dec_trivial
|
|||
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
-- this could be moved to pnat, but it uses find_midpoint which still has sorries in real.basic
|
||||
theorem sep_by_inv {a b : ℚ} (H : a > b) : ∃ N : ℕ+, a > (b + N⁻¹ + N⁻¹) :=
|
||||
begin
|
||||
apply exists.elim (find_midpoint H),
|
||||
intro c Hc,
|
||||
existsi (pceil ((1 + 1 + 1) / c)),
|
||||
apply rat.lt.trans,
|
||||
rotate 1,
|
||||
apply and.left Hc,
|
||||
rewrite rat.add.assoc,
|
||||
apply rat.add_lt_add_left,
|
||||
rewrite -(@rat.add_halves c) at {3},
|
||||
apply rat.add_lt_add,
|
||||
repeat (apply lt_of_le_of_lt;
|
||||
apply inv_pceil_div;
|
||||
apply dec_trivial;
|
||||
apply and.right Hc;
|
||||
apply div_lt_div_of_pos_of_lt_of_pos;
|
||||
repeat (apply dec_trivial);
|
||||
apply and.right Hc)
|
||||
end
|
||||
|
||||
theorem helper_1 {a : ℚ} (H : a > 0) : -a + -a ≤ -a :=
|
||||
!neg_add ▸ neg_le_neg (le_add_of_nonneg_left (le_of_lt H))
|
||||
|
||||
theorem rewrite_helper8 (a b c : ℚ) : a - b = c - b + (a - c) :=
|
||||
by rewrite[add_sub,rat.sub_add_cancel] ⬝ !rat.add.comm
|
||||
|
||||
theorem nonneg_of_ge_neg_invs (a : ℚ) (H : ∀ n : ℕ+, -n⁻¹ ≤ a) : 0 ≤ a :=
|
||||
rat.le_of_not_gt (suppose a < 0,
|
||||
have H2 : 0 < -a, from neg_pos_of_neg this,
|
||||
(rat.not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc
|
||||
(pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2
|
||||
: !inv_pceil_div dec_trivial H2
|
||||
... < -a / 1
|
||||
: div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2
|
||||
... = -a : div_one)))
|
||||
|
||||
---------
|
||||
namespace s
|
||||
definition pos (s : seq) := ∃ n : ℕ+, n⁻¹ < (s n)
|
||||
|
||||
|
@ -66,11 +27,8 @@ definition nonneg (s : seq) := ∀ n : ℕ+, -(n⁻¹) ≤ s n
|
|||
theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) :
|
||||
∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → (s n) ≥ N⁻¹ :=
|
||||
begin
|
||||
apply exists.elim H,
|
||||
intro n Hn,
|
||||
let Em := sep_by_inv Hn,
|
||||
apply exists.elim Em,
|
||||
intro N HN,
|
||||
cases H with [n, Hn],
|
||||
cases sep_by_inv Hn with [N, HN],
|
||||
existsi N,
|
||||
intro m Hm,
|
||||
have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self,
|
||||
|
@ -94,9 +52,7 @@ theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) :
|
|||
|
||||
theorem pos_of_bdd_away {s : seq} (H : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → (s n) ≥ N⁻¹) : pos s :=
|
||||
begin
|
||||
rewrite ↑pos,
|
||||
apply exists.elim H,
|
||||
intro N HN,
|
||||
cases H with [N, HN],
|
||||
existsi (N + pone),
|
||||
apply lt_of_lt_of_le,
|
||||
apply inv_add_lt_left,
|
||||
|
@ -111,7 +67,6 @@ theorem bdd_within_of_nonneg {s : seq} (Hs : regular s) (H : nonneg s) :
|
|||
intros,
|
||||
existsi n,
|
||||
intro m Hm,
|
||||
rewrite ↑nonneg at H,
|
||||
apply le.trans,
|
||||
apply neg_le_neg,
|
||||
apply inv_ge_of_le,
|
||||
|
@ -126,10 +81,7 @@ theorem nonneg_of_bdd_within {s : seq} (Hs : regular s)
|
|||
intro k,
|
||||
apply squeeze_2,
|
||||
intro ε Hε,
|
||||
apply exists.elim (H (pceil ((1 + 1) / ε))),
|
||||
intro N HN,
|
||||
let HN' := HN (max (pceil ((1+1)/ε)) N),
|
||||
let HN'' := HN' (!max_right),
|
||||
cases H (pceil ((1 + 1) / ε)) with [N, HN],
|
||||
apply le.trans,
|
||||
rotate 1,
|
||||
apply ge_sub_of_abs_sub_le_left,
|
||||
|
@ -141,7 +93,7 @@ theorem nonneg_of_bdd_within {s : seq} (Hs : regular s)
|
|||
rotate 1,
|
||||
apply rat.add_le_add,
|
||||
rotate 1,
|
||||
apply HN'',
|
||||
apply HN (max (pceil ((1+1)/ε)) N) !max_right,
|
||||
rotate_right 1,
|
||||
apply neg_le_neg,
|
||||
apply inv_ge_of_le,
|
||||
|
@ -161,9 +113,7 @@ theorem nonneg_of_bdd_within {s : seq} (Hs : regular s)
|
|||
|
||||
theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos s) : pos t :=
|
||||
begin
|
||||
rewrite [↑pos at *],
|
||||
apply exists.elim (bdd_away_of_pos Hs Hp),
|
||||
intro N HN,
|
||||
cases (bdd_away_of_pos Hs Hp) with [N, HN],
|
||||
existsi 2 * 2 * N,
|
||||
apply lt_of_lt_of_le,
|
||||
rotate 1,
|
||||
|
@ -172,7 +122,7 @@ theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos
|
|||
have Hs4 : N⁻¹ ≤ s (2 * 2 * N), from HN _ (!mul_le_mul_left),
|
||||
apply lt_of_lt_of_le,
|
||||
rotate 1,
|
||||
apply iff.mpr (rat.add_le_add_right_iff _ _ _),
|
||||
apply iff.mpr !rat.add_le_add_right_iff,
|
||||
apply Hs4,
|
||||
rewrite [*pnat.mul.assoc, pnat.add_halves, -(add_halves N), rat.add_sub_cancel],
|
||||
apply inv_two_mul_lt_inv
|
||||
|
@ -185,9 +135,7 @@ theorem nonneg_of_nonneg_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (He
|
|||
apply nonneg_of_bdd_within,
|
||||
apply Ht,
|
||||
intros,
|
||||
let Bd := (bdd_within_of_nonneg Hs Hp) (2 * 2 * n),
|
||||
apply exists.elim Bd,
|
||||
intro Ns HNs,
|
||||
cases bdd_within_of_nonneg Hs Hp (2 * 2 * n) with [Ns, HNs],
|
||||
existsi max Ns (2 * 2 * n),
|
||||
intro m Hm,
|
||||
apply le.trans,
|
||||
|
@ -226,7 +174,6 @@ definition s_lt (a b : seq) := pos (sadd b (sneg a))
|
|||
|
||||
theorem zero_nonneg : nonneg zero :=
|
||||
begin
|
||||
rewrite ↑[nonneg, zero],
|
||||
intros,
|
||||
apply neg_nonpos_of_nonneg,
|
||||
apply le_of_lt,
|
||||
|
@ -257,9 +204,7 @@ theorem s_nonneg_of_pos {s : seq} (Hs : regular s) (H : pos s) : nonneg s :=
|
|||
apply nonneg_of_bdd_within,
|
||||
apply Hs,
|
||||
intros,
|
||||
let Bt := bdd_away_of_pos Hs H,
|
||||
apply exists.elim Bt,
|
||||
intro N HN,
|
||||
cases bdd_away_of_pos Hs H with [N, HN],
|
||||
existsi N,
|
||||
intro m Hm,
|
||||
apply le.trans,
|
||||
|
@ -354,7 +299,6 @@ theorem s_add_lt_add_left {s t : seq} (Hs : regular s) (Ht : regular t) (Hst : s
|
|||
|
||||
theorem add_nonneg_of_nonneg {s t : seq} (Hs : nonneg s) (Ht : nonneg t) : nonneg (sadd s t) :=
|
||||
begin
|
||||
rewrite [↑nonneg at *, ↑sadd],
|
||||
intros,
|
||||
rewrite [-pnat.add_halves, neg_add],
|
||||
apply add_le_add,
|
||||
|
@ -418,14 +362,14 @@ theorem equiv_of_le_of_ge {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s
|
|||
apply le_of_neg_le_neg,
|
||||
rewrite [2 neg_add, neg_neg],
|
||||
apply rat.le.trans,
|
||||
apply helper_1,
|
||||
apply rat.neg_add_neg_le_neg_of_pos,
|
||||
apply inv_pos,
|
||||
rewrite add.comm,
|
||||
apply Lst,
|
||||
apply le_of_neg_le_neg,
|
||||
rewrite [neg_add, neg_neg],
|
||||
apply rat.le.trans,
|
||||
apply helper_1,
|
||||
apply rat.neg_add_neg_le_neg_of_pos,
|
||||
apply inv_pos,
|
||||
apply Lts,
|
||||
repeat assumption
|
||||
|
@ -438,10 +382,8 @@ theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_
|
|||
s_le s t ∧ sep s t :=
|
||||
begin
|
||||
apply and.intro,
|
||||
rewrite [↑s_lt at *, ↑pos at *, ↑s_le, ↑nonneg],
|
||||
intros,
|
||||
apply exists.elim Lst,
|
||||
intro N HN,
|
||||
cases Lst with [N, HN],
|
||||
let Rns := reg_neg_reg Hs,
|
||||
let Rtns := reg_add_reg Ht Rns,
|
||||
let Habs := ge_sub_of_abs_sub_le_right (Rtns N n),
|
||||
|
@ -455,7 +397,6 @@ theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_
|
|||
apply HN
|
||||
end
|
||||
... = -n⁻¹ : by rewrite zero_sub),
|
||||
rewrite ↑sep,
|
||||
exact or.inl Lst
|
||||
end
|
||||
|
||||
|
@ -463,16 +404,13 @@ theorem lt_of_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_le
|
|||
s_lt s t :=
|
||||
begin
|
||||
let Le := and.left H,
|
||||
let Hsep := and.right H,
|
||||
rewrite [↑sep at Hsep],
|
||||
apply or.elim Hsep,
|
||||
intro P, exact P,
|
||||
intro Hlt,
|
||||
cases and.right H with [P, Hlt],
|
||||
exact P,
|
||||
rewrite [↑s_le at Le, ↑nonneg at Le, ↑s_lt at Hlt, ↑pos at Hlt],
|
||||
apply exists.elim Hlt,
|
||||
intro N HN,
|
||||
let LeN := Le N,
|
||||
let HN' := (iff.mpr (neg_lt_neg_iff_lt _ _)) HN,
|
||||
let HN' := (iff.mpr !neg_lt_neg_iff_lt) HN,
|
||||
rewrite [↑sadd at HN', ↑sneg at HN', neg_add at HN', neg_neg at HN', add.comm at HN'],
|
||||
let HN'' := not_le_of_gt HN',
|
||||
apply absurd LeN HN''
|
||||
|
@ -545,10 +483,8 @@ theorem s_mul_pos_of_pos {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : po
|
|||
(Hpt : pos t) : pos (smul s t) :=
|
||||
begin
|
||||
rewrite [↑pos at *],
|
||||
apply exists.elim (bdd_away_of_pos Hs Hps),
|
||||
intros Ns HNs,
|
||||
apply exists.elim (bdd_away_of_pos Ht Hpt),
|
||||
intros Nt HNt,
|
||||
cases bdd_away_of_pos Hs Hps with [Ns, HNs],
|
||||
cases bdd_away_of_pos Ht Hpt with [Nt, HNt],
|
||||
existsi 2 * max Ns Nt * max Ns Nt,
|
||||
rewrite ↑smul,
|
||||
apply lt_of_lt_of_le,
|
||||
|
@ -726,8 +662,6 @@ theorem s_mul_ge_zero_of_ge_zero {s t : seq} (Hs : regular s) (Ht : regular t)
|
|||
apply reg_mul_reg Hs Ht
|
||||
end
|
||||
|
||||
|
||||
|
||||
theorem not_lt_self (s : seq) : ¬ s_lt s s :=
|
||||
begin
|
||||
intro Hlt,
|
||||
|
@ -743,7 +677,7 @@ theorem not_sep_self (s : seq) : ¬ s ≢ s :=
|
|||
begin
|
||||
intro Hsep,
|
||||
rewrite ↑sep at Hsep,
|
||||
let Hsep' := (iff.mp (!or_self)) Hsep,
|
||||
let Hsep' := (iff.mp !or_self) Hsep,
|
||||
apply absurd Hsep' (!not_lt_self)
|
||||
end
|
||||
|
||||
|
@ -843,13 +777,11 @@ theorem s_lt_of_lt_of_le {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r
|
|||
let Runt := reg_add_reg Hu (reg_neg_reg Ht),
|
||||
have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin
|
||||
intro m,
|
||||
rewrite [↑sadd, ↑sneg, -rewrite_helper8]
|
||||
rewrite [↑sadd, ↑sneg, -sub_eq_sub_add_sub]
|
||||
end,
|
||||
rewrite [↑s_lt at *, ↑s_le at *],
|
||||
apply exists.elim (bdd_away_of_pos Rtns Hst),
|
||||
intro Nt HNt,
|
||||
apply exists.elim (bdd_within_of_nonneg Runt Htu (2 * Nt)),
|
||||
intro Nu HNu,
|
||||
cases bdd_away_of_pos Rtns Hst with [Nt, HNt],
|
||||
cases bdd_within_of_nonneg Runt Htu (2 * Nt) with [Nu, HNu],
|
||||
apply pos_of_bdd_away,
|
||||
existsi max (2 * Nt) Nu,
|
||||
intro n Hn,
|
||||
|
@ -883,13 +815,11 @@ theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r
|
|||
let Runt := reg_add_reg Hu (reg_neg_reg Ht),
|
||||
have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin
|
||||
intro m,
|
||||
rewrite [↑sadd, ↑sneg, -rewrite_helper8]
|
||||
rewrite [↑sadd, ↑sneg, -sub_eq_sub_add_sub]
|
||||
end,
|
||||
rewrite [↑s_lt at *, ↑s_le at *],
|
||||
apply exists.elim (bdd_away_of_pos Runt Htu),
|
||||
intro Nu HNu,
|
||||
apply exists.elim (bdd_within_of_nonneg Rtns Hst (2 * Nu)),
|
||||
intro Nt HNt,
|
||||
cases bdd_away_of_pos Runt Htu with [Nu, HNu],
|
||||
cases bdd_within_of_nonneg Rtns Hst (2 * Nu) with [Nt, HNt],
|
||||
apply pos_of_bdd_away,
|
||||
existsi max (2 * Nu) Nt,
|
||||
intro n Hn,
|
||||
|
@ -918,19 +848,11 @@ theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r
|
|||
|
||||
theorem le_of_le_reprs {s t : seq} (Hs : regular s) (Ht : regular t)
|
||||
(Hle : ∀ n : ℕ+, s_le s (const (t n))) : s_le s t :=
|
||||
begin
|
||||
rewrite [↑s_le, ↑nonneg],
|
||||
intro m,
|
||||
apply Hle (2 * m) m
|
||||
end
|
||||
by intro m; apply Hle (2 * m) m
|
||||
|
||||
theorem le_of_reprs_le {s t : seq} (Hs : regular s) (Ht : regular t)
|
||||
(Hle : ∀ n : ℕ+, s_le (const (t n)) s) : s_le t s :=
|
||||
begin
|
||||
rewrite [↑s_le, ↑nonneg],
|
||||
intro m,
|
||||
apply Hle (2 * m) m
|
||||
end
|
||||
by intro m; apply Hle (2 * m) m
|
||||
|
||||
-----------------------------
|
||||
-- of_rat theorems
|
||||
|
|
Loading…
Reference in a new issue