diff --git a/tests/lean/run/blast_ematch3.lean b/tests/lean/run/blast_ematch3.lean index a219b7839..25b7c897e 100644 --- a/tests/lean/run/blast_ematch3.lean +++ b/tests/lean/run/blast_ematch3.lean @@ -35,11 +35,4 @@ set_option blast.ematch true theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b := by blast - -attribute mul_one [forward] -attribute inv_mul_cancel_right [forward] - --- TODO(Leo): check if qfc can get this one --- theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b := --- by blast end diff --git a/tests/lean/run/blast_ematch6.lean b/tests/lean/run/blast_ematch6.lean new file mode 100644 index 000000000..0ce360390 --- /dev/null +++ b/tests/lean/run/blast_ematch6.lean @@ -0,0 +1,30 @@ +import algebra.ring data.nat +open algebra + +variables {A : Type} + +section +variable [s : group A] +include s + +set_option blast.simp false +set_option blast.subst false +set_option blast.ematch true + +attribute mul_one [forward] +attribute mul.assoc [forward] +attribute mul.left_inv [forward] +attribute one_mul [forward] + +theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b := +-- This is the kind of theorem that can be easily proved using superposition, +-- but cannot to be proved using E-matching. +-- To prove it using E-matching, we must provide the following auxiliary assertion. +-- E-matching can prove it automatically, and then it is trivial to prove the conclusion +-- using it. +-- Remark: this theorem can also be proved using model-based quantifier instantiation (MBQI) available in Z3. +-- So, we may be able to prove it using qcf. +assert a⁻¹ * 1 = b, by blast, +by blast + +end