doc(examples/lean): expand the dependent if-then-else example
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
bc2d504ccc
commit
4f22a3bfed
1 changed files with 20 additions and 0 deletions
|
@ -69,3 +69,23 @@ theorem dep_if_congr {A : TypeM} (c1 c2 : Bool)
|
|||
(He : e1 = cast (by simp) e2)
|
||||
: dep_if c1 t1 e1 = dep_if c2 t2 e2
|
||||
:= by simp
|
||||
|
||||
scope
|
||||
-- Here is an example where dep_if is useful
|
||||
-- Suppose we have a (div s t H) where H is a proof for t ≠ 0
|
||||
variable div (s : Nat) (t : Nat) (H : t ≠ 0) : Nat
|
||||
-- Now, we want to define a function that
|
||||
-- returns 0 if x = 0
|
||||
-- and div 10 x _ otherwise
|
||||
-- We can't use the standard if-the-else, because we don't have a way to synthesize the proof for x ≠ 0
|
||||
check λ x, dep_if (x = 0) (λ H, 0) (λ H : ¬ x = 0, div 10 x H)
|
||||
pop_scope
|
||||
|
||||
-- If the dependent then/else branches do not use the proofs Hc : c and Hn : ¬ c, then we
|
||||
-- can reduce the dependent-if to a regular if
|
||||
theorem dep_if_if {A : TypeU} (c : Bool) (t e : A) : dep_if c (λ Hc, t) (λ Hn, e) = if c then t else e
|
||||
:= or_elim (em c)
|
||||
(assume Hc : c, calc dep_if c (λ Hc, t) (λ Hn, e) = (λ Hc, t) Hc : dep_if_true _ _ _ Hc
|
||||
... = if c then t else e : by simp)
|
||||
(assume Hn : ¬ c, calc dep_if c (λ Hc, t) (λ Hn, e) = (λ Hn, e) Hn : dep_if_false _ _ _ Hn
|
||||
... = if c then t else e : by simp)
|
||||
|
|
Loading…
Reference in a new issue