doc(examples/lean): expand the dependent if-then-else example

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-30 22:44:04 -08:00
parent bc2d504ccc
commit 4f22a3bfed

View file

@ -69,3 +69,23 @@ theorem dep_if_congr {A : TypeM} (c1 c2 : Bool)
(He : e1 = cast (by simp) e2) (He : e1 = cast (by simp) e2)
: dep_if c1 t1 e1 = dep_if c2 t2 e2 : dep_if c1 t1 e1 = dep_if c2 t2 e2
:= by simp := by simp
scope
-- Here is an example where dep_if is useful
-- Suppose we have a (div s t H) where H is a proof for t ≠ 0
variable div (s : Nat) (t : Nat) (H : t ≠ 0) : Nat
-- Now, we want to define a function that
-- returns 0 if x = 0
-- and div 10 x _ otherwise
-- We can't use the standard if-the-else, because we don't have a way to synthesize the proof for x ≠ 0
check λ x, dep_if (x = 0) (λ H, 0) (λ H : ¬ x = 0, div 10 x H)
pop_scope
-- If the dependent then/else branches do not use the proofs Hc : c and Hn : ¬ c, then we
-- can reduce the dependent-if to a regular if
theorem dep_if_if {A : TypeU} (c : Bool) (t e : A) : dep_if c (λ Hc, t) (λ Hn, e) = if c then t else e
:= or_elim (em c)
(assume Hc : c, calc dep_if c (λ Hc, t) (λ Hn, e) = (λ Hc, t) Hc : dep_if_true _ _ _ Hc
... = if c then t else e : by simp)
(assume Hn : ¬ c, calc dep_if c (λ Hc, t) (λ Hn, e) = (λ Hn, e) Hn : dep_if_false _ _ _ Hn
... = if c then t else e : by simp)