refactor(library/algebra/category/morphism): improve performance using rewrite tactic
This commit is contained in:
parent
909ebfc5f1
commit
4f79d12da7
1 changed files with 35 additions and 55 deletions
|
@ -57,12 +57,7 @@ namespace morphism
|
|||
|
||||
theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a}
|
||||
(Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' :=
|
||||
calc
|
||||
g = g ∘ id : symm !id_right
|
||||
... = g ∘ f ∘ g' : {symm Hr}
|
||||
... = (g ∘ f) ∘ g' : !assoc
|
||||
... = id ∘ g' : {Hl}
|
||||
... = g' : !id_left
|
||||
by rewrite [-(id_right g), -Hr, assoc, Hl, id_left]
|
||||
|
||||
theorem retraction_eq_intro [H : is_section f] (H2 : f ∘ h = id) : retraction_of f = h
|
||||
:= left_inverse_eq_right_inverse !retraction_compose H2
|
||||
|
@ -104,21 +99,21 @@ namespace morphism
|
|||
is_section.mk
|
||||
(calc
|
||||
(retraction_of f ∘ retraction_of g) ∘ g ∘ f
|
||||
= retraction_of f ∘ retraction_of g ∘ g ∘ f : symm (assoc _ _ (g ∘ f))
|
||||
... = retraction_of f ∘ (retraction_of g ∘ g) ∘ f : {assoc _ g f}
|
||||
... = retraction_of f ∘ id ∘ f : {retraction_compose g}
|
||||
... = retraction_of f ∘ f : {id_left f}
|
||||
... = id : !retraction_compose)
|
||||
= retraction_of f ∘ retraction_of g ∘ g ∘ f : by rewrite -assoc
|
||||
... = retraction_of f ∘ (retraction_of g ∘ g) ∘ f : by rewrite (assoc _ g f)
|
||||
... = retraction_of f ∘ id ∘ f : by rewrite retraction_compose
|
||||
... = retraction_of f ∘ f : by rewrite id_left
|
||||
... = id : by rewrite retraction_compose)
|
||||
|
||||
theorem composition_is_retraction [instance] [Hf : is_retraction f] [Hg : is_retraction g]
|
||||
: is_retraction (g ∘ f) :=
|
||||
is_retraction.mk
|
||||
(calc
|
||||
(g ∘ f) ∘ section_of f ∘ section_of g = g ∘ f ∘ section_of f ∘ section_of g : symm !assoc
|
||||
... = g ∘ (f ∘ section_of f) ∘ section_of g : {assoc f _ _}
|
||||
... = g ∘ id ∘ section_of g : {compose_section f}
|
||||
... = g ∘ section_of g : {id_left (section_of g)}
|
||||
... = id : !compose_section)
|
||||
... = g ∘ (f ∘ section_of f) ∘ section_of g : by rewrite -assoc
|
||||
... = g ∘ id ∘ section_of g : by rewrite compose_section
|
||||
... = g ∘ section_of g : by rewrite id_left
|
||||
... = id : by rewrite compose_section)
|
||||
|
||||
theorem composition_is_inverse [instance] [Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
|
||||
!section_retraction_imp_iso
|
||||
|
@ -154,25 +149,25 @@ namespace morphism
|
|||
is_mono.mk
|
||||
(λ c g h H,
|
||||
calc
|
||||
g = id ∘ g : symm !id_left
|
||||
... = (retraction_of f ∘ f) ∘ g : {symm (retraction_compose f)}
|
||||
... = retraction_of f ∘ f ∘ g : symm !assoc
|
||||
... = retraction_of f ∘ f ∘ h : {H}
|
||||
... = (retraction_of f ∘ f) ∘ h : !assoc
|
||||
... = id ∘ h : {retraction_compose f}
|
||||
... = h : !id_left)
|
||||
g = id ∘ g : symm (id_left g)
|
||||
... = (retraction_of f ∘ f) ∘ g : by rewrite -retraction_compose
|
||||
... = retraction_of f ∘ f ∘ g : by rewrite assoc
|
||||
... = retraction_of f ∘ f ∘ h : by rewrite H
|
||||
... = (retraction_of f ∘ f) ∘ h : by rewrite -assoc
|
||||
... = id ∘ h : by rewrite retraction_compose
|
||||
... = h : by rewrite id_left)
|
||||
|
||||
theorem retraction_is_epi [instance] (f : a ⟶ b) [H : is_retraction f] : is_epi f :=
|
||||
is_epi.mk
|
||||
(λ c g h H,
|
||||
calc
|
||||
g = g ∘ id : symm !id_right
|
||||
... = g ∘ f ∘ section_of f : {symm (compose_section f)}
|
||||
... = (g ∘ f) ∘ section_of f : !assoc
|
||||
... = (h ∘ f) ∘ section_of f : {H}
|
||||
... = h ∘ f ∘ section_of f : symm !assoc
|
||||
... = h ∘ id : {compose_section f}
|
||||
... = h : !id_right)
|
||||
g = g ∘ id : symm (id_right g)
|
||||
... = g ∘ f ∘ section_of f : by rewrite -(compose_section f)
|
||||
... = (g ∘ f) ∘ section_of f : by rewrite assoc
|
||||
... = (h ∘ f) ∘ section_of f : by rewrite H
|
||||
... = h ∘ f ∘ section_of f : by rewrite -assoc
|
||||
... = h ∘ id : by rewrite compose_section
|
||||
... = h : by rewrite id_right)
|
||||
|
||||
--these theorems are now proven automatically using type classes
|
||||
--should they be instances?
|
||||
|
@ -204,37 +199,22 @@ namespace morphism
|
|||
theorem compose_pV : q ∘ q⁻¹ = id := !compose_inverse
|
||||
theorem compose_Vp : q⁻¹ ∘ q = id := !inverse_compose
|
||||
theorem compose_V_pp : q⁻¹ ∘ (q ∘ p) = p :=
|
||||
calc
|
||||
q⁻¹ ∘ (q ∘ p) = (q⁻¹ ∘ q) ∘ p : assoc (q⁻¹) q p
|
||||
... = id ∘ p : {inverse_compose q}
|
||||
... = p : id_left p
|
||||
by rewrite [assoc, inverse_compose, id_left]
|
||||
|
||||
theorem compose_p_Vp : q ∘ (q⁻¹ ∘ g) = g :=
|
||||
calc
|
||||
q ∘ (q⁻¹ ∘ g) = (q ∘ q⁻¹) ∘ g : assoc q (q⁻¹) g
|
||||
... = id ∘ g : {compose_inverse q}
|
||||
... = g : id_left g
|
||||
by rewrite [assoc, compose_inverse, id_left]
|
||||
|
||||
theorem compose_pp_V : (r ∘ q) ∘ q⁻¹ = r :=
|
||||
calc
|
||||
(r ∘ q) ∘ q⁻¹ = r ∘ q ∘ q⁻¹ : (assoc r q (q⁻¹))⁻¹
|
||||
... = r ∘ id : {compose_inverse q}
|
||||
... = r : id_right r
|
||||
by rewrite [-assoc, compose_inverse, id_right]
|
||||
|
||||
theorem compose_pV_p : (f ∘ q⁻¹) ∘ q = f :=
|
||||
calc
|
||||
(f ∘ q⁻¹) ∘ q = f ∘ q⁻¹ ∘ q : (assoc f (q⁻¹) q)⁻¹
|
||||
... = f ∘ id : {inverse_compose q}
|
||||
... = f : id_right f
|
||||
by rewrite [-assoc, inverse_compose, id_right]
|
||||
|
||||
theorem inv_pp [H' : is_iso p] : (q ∘ p)⁻¹ = p⁻¹ ∘ q⁻¹ :=
|
||||
have H1 : (p⁻¹ ∘ q⁻¹) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)), from (assoc (p⁻¹) (q⁻¹) (q ∘ p))⁻¹,
|
||||
have H2 : (p⁻¹) ∘ (q⁻¹ ∘ (q ∘ p)) = p⁻¹ ∘ p, from congr_arg _ (compose_V_pp q p),
|
||||
have H3 : p⁻¹ ∘ p = id, from inverse_compose p,
|
||||
inverse_eq_intro_left (H1 ⬝ H2 ⬝ H3)
|
||||
--the proof using calc is hard for the unifier (needs ~90k steps)
|
||||
-- inverse_eq_intro_left
|
||||
-- (calc
|
||||
-- (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)) : assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹
|
||||
-- ... = (p⁻¹) ∘ p : congr_arg (λx, p⁻¹ ∘ x) (compose_V_pp q p)
|
||||
-- ... = id : inverse_compose p)
|
||||
inverse_eq_intro_left
|
||||
(show (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = id, from
|
||||
by rewrite [-assoc, compose_V_pp, inverse_compose])
|
||||
|
||||
theorem inv_Vp [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q := inverse_involutive q ▸ inv_pp (q⁻¹) g
|
||||
theorem inv_pV [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ := inverse_involutive f ▸ inv_pp q (f⁻¹)
|
||||
theorem inv_VV [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q := inverse_involutive r ▸ inv_Vp q (r⁻¹)
|
||||
|
|
Loading…
Reference in a new issue