diff --git a/tests/lean/run/div_wf.lean b/tests/lean/run/div_wf.lean index 226649ea9..d6f28e025 100644 --- a/tests/lean/run/div_wf.lean +++ b/tests/lean/run/div_wf.lean @@ -1,4 +1,4 @@ -import data.nat data.prod +import data.nat data.prod logic.wf_k open nat well_founded decidable prod eq.ops -- I use "dependent" if-then-else to be able to communicate the if-then-else condition @@ -20,8 +20,6 @@ dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y) (lt_aux Hp) y + 1) else (λ Hn, zer definition wdiv (x y : nat) := fix wdiv.F x y -eval wdiv 6 2 - theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 := congr_fun (well_founded.fix_eq wdiv.F x) y @@ -31,7 +29,8 @@ congr_fun (well_founded.fix_eq wdiv.F x) y -- It will always pack things. definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel) -definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := prod.lex.wf lt.wf lt.wf +definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := +intro_k (prod.lex.wf lt.wf lt.wf) 20 -- allow 20 recursive calls without computing with proofs infixl `≺`:50 := pair_nat.lt -- Recursive lemma used to justify recursive call @@ -48,8 +47,6 @@ dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y, y) (plt_aux p₁ Hp) + 1) else (λ definition pdiv (x y : nat) := fix pdiv.F (x, y) -eval pdiv 9 2 - theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero := well_founded.fix_eq pdiv.F (x, y) @@ -58,3 +55,6 @@ well_founded.fix_eq pdiv.F (x, y) theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λ Hc, t) (λ Hnc, e) = ite c t e := rfl + +example : pdiv 398 23 = 17 := +rfl