feat(library/algebra/group_bigops): add Prodl theorems
This commit is contained in:
parent
f5c546e810
commit
516333ad65
1 changed files with 19 additions and 1 deletions
|
@ -8,7 +8,7 @@ Finite products on a monoid, and finite sums on an additive monoid.
|
|||
We have to be careful with dependencies. This theory imports files from finset and list, which
|
||||
import basic files from nat. Then nat imports this file to instantiate finite products and sums.
|
||||
-/
|
||||
import .group data.list.basic data.list.perm data.finset.basic
|
||||
import .group .group_power data.list.basic data.list.perm data.finset.basic
|
||||
open algebra function binary quot subtype list finset
|
||||
|
||||
namespace algebra
|
||||
|
@ -65,6 +65,24 @@ section monoid
|
|||
theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B)
|
||||
| [] := rfl
|
||||
| (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one]
|
||||
|
||||
lemma Prodl_singleton {a : A} {f : A → B} : Prodl [a] f = f a :=
|
||||
!one_mul
|
||||
|
||||
lemma Prodl_map {f : A → B} :
|
||||
∀ {l : list A}, Prodl l f = Prodl (map f l) id
|
||||
| nil := by rewrite [map_nil]
|
||||
| (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end
|
||||
|
||||
open nat
|
||||
lemma Prodl_eq_pow_of_const {f : A → B} :
|
||||
∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l
|
||||
| nil := take b, assume Pconst, by rewrite [length_nil, {b^0}algebra.pow_zero]
|
||||
| (a::l) := take b, assume Pconst,
|
||||
assert Pconstl : ∀ a', a' ∈ l → f a' = b,
|
||||
from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in),
|
||||
by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons, add_one, pow_succ' b]
|
||||
|
||||
end monoid
|
||||
|
||||
section comm_monoid
|
||||
|
|
Loading…
Reference in a new issue