feat(library/algebra/group_bigops): add Prodl theorems

This commit is contained in:
Haitao Zhang 2015-07-14 19:17:40 -07:00 committed by Leonardo de Moura
parent f5c546e810
commit 516333ad65

View file

@ -8,7 +8,7 @@ Finite products on a monoid, and finite sums on an additive monoid.
We have to be careful with dependencies. This theory imports files from finset and list, which We have to be careful with dependencies. This theory imports files from finset and list, which
import basic files from nat. Then nat imports this file to instantiate finite products and sums. import basic files from nat. Then nat imports this file to instantiate finite products and sums.
-/ -/
import .group data.list.basic data.list.perm data.finset.basic import .group .group_power data.list.basic data.list.perm data.finset.basic
open algebra function binary quot subtype list finset open algebra function binary quot subtype list finset
namespace algebra namespace algebra
@ -65,6 +65,24 @@ section monoid
theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B) theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B)
| [] := rfl | [] := rfl
| (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one] | (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one]
lemma Prodl_singleton {a : A} {f : A → B} : Prodl [a] f = f a :=
!one_mul
lemma Prodl_map {f : A → B} :
∀ {l : list A}, Prodl l f = Prodl (map f l) id
| nil := by rewrite [map_nil]
| (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end
open nat
lemma Prodl_eq_pow_of_const {f : A → B} :
∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l
| nil := take b, assume Pconst, by rewrite [length_nil, {b^0}algebra.pow_zero]
| (a::l) := take b, assume Pconst,
assert Pconstl : ∀ a', a' ∈ l → f a' = b,
from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in),
by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons, add_one, pow_succ' b]
end monoid end monoid
section comm_monoid section comm_monoid