feat(library/unifier): solved universe constraints of the form succ^k1 a = max k2 ?m (when k1 >= k2)

This commit is contained in:
Leonardo de Moura 2014-11-12 17:28:33 -08:00
parent edd04881ee
commit 51719145f9
3 changed files with 132 additions and 1 deletions

View file

@ -85,6 +85,9 @@ level mk_param_univ(name const & n);
level mk_global_univ(name const & n);
level mk_meta_univ(name const & n);
/** \brief Convert (succ^k l) into (l, k). If l is not a succ, then return (l, 0) */
pair<level, unsigned> to_offset(level l);
inline unsigned hash(level const & l) { return l.hash(); }
inline level_kind kind(level const & l) { return l.kind(); }
inline bool is_zero(level const & l) { return kind(l) == level_kind::Zero; }

View file

@ -8,6 +8,7 @@ Author: Leonardo de Moura
#include <memory>
#include <vector>
#include <limits>
#include <algorithm>
#include "util/interrupt.h"
#include "util/luaref.h"
#include "util/lazy_list_fn.h"
@ -2043,7 +2044,7 @@ struct unifier_fn {
}
}
/** \brief Return true iff \c is a constraint of the form
/** \brief Return solved iff \c c is a constraint of the form
lhs =?= max(rest, lhs)
and is successfully solved.
*/
@ -2060,6 +2061,43 @@ struct unifier_fn {
return Continue;
}
/** Auxiliary method for process_succ_eq_max */
status process_succ_eq_max_core(level const & lhs, level const & rhs, justification const & jst) {
if (!is_succ(lhs) || !is_max(rhs))
return Continue;
level rhs_l = max_lhs(rhs);
level rhs_r = max_rhs(rhs);
if (is_meta(rhs_l))
std::swap(rhs_l, rhs_r);
if (!is_meta(rhs_r) || !is_explicit(rhs_l))
return Continue;
unsigned k_2 = to_explicit(rhs_l);
pair<level, unsigned> lhs_k = to_offset(lhs);
if (lhs_k.second < k_2)
return Continue;
if (assign(rhs_r, lhs, jst)) {
return Solved;
} else {
set_conflict(jst);
return Failed;
}
}
/** \brief Return Solved iff \c c is a constraint of the form
succ^k_1 a =?= max(k_2, ?m)
where k_1 >= k_2
and is successfully solved
*/
status process_succ_eq_max(constraint const & c) {
lean_assert(is_level_eq_cnstr(c));
level lhs = cnstr_lhs_level(c);
level rhs = cnstr_rhs_level(c);
justification jst = c.get_justification();
status st = process_succ_eq_max_core(lhs, rhs, jst);
if (st != Continue) return st;
return process_succ_eq_max_core(rhs, lhs, jst);
}
/**
\brief Process the following constraints
1. (max l1 l2) =?= 0 OR
@ -2152,6 +2190,8 @@ struct unifier_fn {
}
status st = process_l_eq_max(c);
if (st != Continue) return st == Solved;
st = process_succ_eq_max(c);
if (st != Continue) return st == Solved;
if (m_config.m_discard) {
// we only try try_level_eq_zero and try_merge_max when we are discarding
// constraints that canno be solved.

View file

@ -0,0 +1,88 @@
import logic data.nat.basic data.prod data.unit
open nat prod
inductive vector (A : Type) : nat → Type :=
vnil {} : vector A zero,
vcons : Π {n : nat}, A → vector A n → vector A (succ n)
namespace vector
print definition no_confusion
infixr `::` := vcons
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : Π (n : nat), vector A n → Type.{l₂+1}}
definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), @below A C n v → C n v) : C n v :=
have general : C n v × @below A C n v, from
rec_on v
(pair (H zero vnil unit.star) unit.star)
(λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (r₁ : C n₁ v₁ × @below A C n₁ v₁),
have b : @below A C _ (vcons a₁ v₁), from
r₁,
have c : C (succ n₁) (vcons a₁ v₁), from
H (succ n₁) (vcons a₁ v₁) b,
pair c b),
pr₁ general
end
print "====================="
definition append {A : Type} {n m : nat} (w : vector A m) (v : vector A n) : vector A (n + m) :=
brec_on w (λ (n : nat) (w : vector A n),
cases_on w
(λ (B : below vnil), v)
(λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (B : below (vcons a₁ v₁)),
vcons a₁ (pr₁ B)))
exit
check brec_on
definition bw := @below
definition sum {n : nat} (v : vector nat n) : nat :=
brec_on v (λ (n : nat) (v : vector nat n),
cases_on v
(λ (B : bw vnil), zero)
(λ (n₁ : nat) (a : nat) (v₁ : vector nat n₁) (B : bw (vcons a v₁)),
a + pr₁ B))
example : sum (10 :: 20 :: vnil) = 30 :=
rfl
definition addk {n : nat} (v : vector nat n) (k : nat) : vector nat n :=
brec_on v (λ (n : nat) (v : vector nat n),
cases_on v
(λ (B : bw vnil), vnil)
(λ (n₁ : nat) (a₁ : nat) (v₁ : vector nat n₁) (B : bw (vcons a₁ v₁)),
vcons (a₁+k) (pr₁ B)))
example : addk (1 :: 2 :: vnil) 3 = 4 :: 5 :: vnil :=
rfl
example : append (1 :: 2 :: vnil) (3 :: vnil) = 1 :: 2 :: 3 :: vnil :=
rfl
definition head {A : Type} {n : nat} (v : vector A (succ n)) : A :=
cases_on v
(λ H : succ n = 0, nat.no_confusion H)
(λn' h t (H : succ n = succ n'), h)
rfl
definition tail {A : Type} {n : nat} (v : vector A (succ n)) : vector A n :=
@cases_on A (λn' v, succ n = n' → vector A (pred n')) (succ n) v
(λ H : succ n = 0, nat.no_confusion H)
(λ (n' : nat) (h : A) (t : vector A n') (H : succ n = succ n'),
t)
rfl
definition add {n : nat} (w v : vector nat n) : vector nat n :=
@brec_on nat (λ (n : nat) (v : vector nat n), vector nat n → vector nat n) n w
(λ (n : nat) (w : vector nat n),
cases_on w
(λ (B : bw vnil) (w : vector nat zero), vnil)
(λ (n₁ : nat) (a₁ : nat) (v₁ : vector nat n₁) (B : bw (vcons a₁ v₁)) (v : vector nat (succ n₁)),
vcons (a₁ + head v) (pr₁ B (tail v)))) v
example : add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil :=
rfl
end vector