feat(library/data/hf): add hf.powerset
This commit is contained in:
parent
6bec3ba58b
commit
51c48277c8
2 changed files with 38 additions and 4 deletions
|
@ -443,14 +443,13 @@ begin
|
|||
end
|
||||
|
||||
theorem subset_of_mem_powerset {s t : finset A} (H : s ∈ powerset t) : s ⊆ t :=
|
||||
by rewrite mem_powerset_iff_subset at H; exact H
|
||||
iff.mp (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem mem_powerset_of_subset {s t : finset A} (H : s ⊆ t) : s ∈ powerset t :=
|
||||
by rewrite -mem_powerset_iff_subset at H; exact H
|
||||
iff.mpr (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem empty_mem_powerset (s : finset A) : ∅ ∈ powerset s :=
|
||||
by rewrite mem_powerset_iff_subset; apply empty_subset
|
||||
mem_powerset_of_subset (empty_subset s)
|
||||
|
||||
end powerset
|
||||
|
||||
end finset
|
||||
|
|
|
@ -364,4 +364,39 @@ begin unfold [subset, image], intro h, rewrite *to_finset_of_finset, apply finse
|
|||
theorem image_union (f : hf → hf) (s t : hf) : image f (s ∪ t) = image f s ∪ image f t :=
|
||||
begin unfold [image, union], rewrite [*to_finset_of_finset, finset.image_union] end
|
||||
|
||||
/- powerset -/
|
||||
definition powerset (s : hf) : hf :=
|
||||
of_finset (finset.image of_finset (finset.powerset (to_finset s)))
|
||||
|
||||
notation [priority hf.prio] `𝒫` s := powerset s
|
||||
|
||||
theorem powerset_empty : powerset ∅ = insert ∅ ∅ :=
|
||||
rfl
|
||||
|
||||
theorem powerset_insert {a : hf} {s : hf} : a ∉ s → powerset (insert a s) = powerset s ∪ image (insert a) (powerset s) :=
|
||||
begin unfold [not_mem, mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h,
|
||||
have (λ (x : finset hf), of_finset (finset.insert a x)) = (λ (x : finset hf), of_finset (finset.insert a (to_finset (of_finset x)))), from
|
||||
funext (λ x, by rewrite to_finset_of_finset),
|
||||
rewrite [finset.powerset_insert h, finset.image_union, -*finset.image_compose,↑compose,this]
|
||||
end
|
||||
|
||||
theorem mem_powerset_iff_subset (s : hf) : ∀ x : hf, x ∈ powerset s ↔ x ⊆ s :=
|
||||
begin
|
||||
intro x, unfold [mem, powerset, subset], rewrite [to_finset_of_finset, finset.mem_image_eq], apply iff.intro,
|
||||
suppose (∃ (w : finset hf), finset.mem w (finset.powerset (to_finset s)) ∧ of_finset w = x),
|
||||
obtain w h₁ h₂, from this,
|
||||
begin subst x, rewrite to_finset_of_finset, exact iff.mp !finset.mem_powerset_iff_subset h₁ end,
|
||||
suppose finset.subset (to_finset x) (to_finset s),
|
||||
assert finset.mem (to_finset x) (finset.powerset (to_finset s)), from iff.mpr !finset.mem_powerset_iff_subset this,
|
||||
exists.intro (to_finset x) (and.intro this (of_finset_to_finset x))
|
||||
end
|
||||
|
||||
theorem subset_of_mem_powerset {s t : hf} (H : s ∈ powerset t) : s ⊆ t :=
|
||||
iff.mp (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem mem_powerset_of_subset {s t : hf} (H : s ⊆ t) : s ∈ powerset t :=
|
||||
iff.mpr (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem empty_mem_powerset (s : hf) : ∅ ∈ powerset s :=
|
||||
mem_powerset_of_subset (empty_subset s)
|
||||
end hf
|
||||
|
|
Loading…
Reference in a new issue