feat(library/lean) add one types as instances of groupoids
This commit is contained in:
parent
86a38c6c3d
commit
5278f70dea
1 changed files with 23 additions and 23 deletions
|
@ -19,6 +19,7 @@ instance [persistent] all_iso
|
||||||
--set_option pp.universes true
|
--set_option pp.universes true
|
||||||
--set_option pp.implicit true
|
--set_option pp.implicit true
|
||||||
universe variable l
|
universe variable l
|
||||||
|
open precategory
|
||||||
definition path_groupoid (A : Type.{l})
|
definition path_groupoid (A : Type.{l})
|
||||||
(H : is_trunc (nat.zero .+1) A) : groupoid.{l l} A :=
|
(H : is_trunc (nat.zero .+1) A) : groupoid.{l l} A :=
|
||||||
groupoid.mk
|
groupoid.mk
|
||||||
|
@ -30,28 +31,7 @@ groupoid.mk
|
||||||
(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
||||||
(λ (a b : A) (p : a ≈ b), concat_1p p)
|
(λ (a b : A) (p : a ≈ b), concat_1p p)
|
||||||
(λ (a b : A) (p : a ≈ b), @is_iso.mk A _ a b p (path.inverse p)
|
(λ (a b : A) (p : a ≈ b), @is_iso.mk A _ a b p (path.inverse p)
|
||||||
sorry sorry)
|
!concat_pV !concat_Vp)
|
||||||
/-have C [visible] : precategory.{l l} A, from precategory.mk
|
|
||||||
(λ a b, a ≈ b)
|
|
||||||
(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
|
|
||||||
(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
|
|
||||||
(λ (a : A), idpath a)
|
|
||||||
(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
|
|
||||||
(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
|
||||||
(λ (a b : A) (p : a ≈ b), concat_1p p),
|
|
||||||
groupoid.mk (precategory.hom)
|
|
||||||
(@precategory.homH A C) --(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
|
|
||||||
(precategory.comp) --(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
|
|
||||||
(precategory.ID) --(λ (a : A), idpath a)
|
|
||||||
(precategory.assoc) --(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
|
|
||||||
(precategory.id_left) --(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
|
||||||
(precategory.id_right) --(λ (a b : A) (p : a ≈ b), concat_1p p)
|
|
||||||
(λ (a b : A) (p : @hom A C a b), @is_iso.mk A C a b p (path.inverse p)
|
|
||||||
(have aux : p⁻¹ ⬝ p ≈ idpath b, from concat_Vp p,
|
|
||||||
have aux2 : p⁻¹ ∘ p ≈ idpath b, from aux,
|
|
||||||
have aux3 : p⁻¹ ∘ p ≈ id, from sorry, aux3)
|
|
||||||
(have aux : p ⬝ p⁻¹ ≈ idpath a, from concat_pV p,
|
|
||||||
sorry))-/
|
|
||||||
|
|
||||||
-- A groupoid with a contractible carrier is a group
|
-- A groupoid with a contractible carrier is a group
|
||||||
definition group_of_contr {ob : Type} (H : is_contr ob)
|
definition group_of_contr {ob : Type} (H : is_contr ob)
|
||||||
|
@ -68,8 +48,21 @@ begin
|
||||||
intro f, exact (morphism.inverse_compose f),
|
intro f, exact (morphism.inverse_compose f),
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition group_of_unit (G : groupoid unit) : group (hom ⋆ ⋆) :=
|
||||||
|
begin
|
||||||
|
fapply group.mk,
|
||||||
|
intros (f, g), apply (comp f g),
|
||||||
|
apply homH,
|
||||||
|
intros (f, g, h), apply ((assoc f g h)⁻¹),
|
||||||
|
apply (ID ⋆),
|
||||||
|
intro f, apply id_left,
|
||||||
|
intro f, apply id_right,
|
||||||
|
intro f, exact (morphism.inverse f),
|
||||||
|
intro f, exact (morphism.inverse_compose f),
|
||||||
|
end
|
||||||
|
|
||||||
-- Conversely we can turn each group into a groupoid on the unit type
|
-- Conversely we can turn each group into a groupoid on the unit type
|
||||||
definition of_group {A : Type.{l}} (G : group A) : groupoid.{l l} unit :=
|
definition of_group (A : Type.{l}) [G : group A] : groupoid.{l l} unit :=
|
||||||
begin
|
begin
|
||||||
fapply groupoid.mk,
|
fapply groupoid.mk,
|
||||||
intros, exact A,
|
intros, exact A,
|
||||||
|
@ -84,4 +77,11 @@ begin
|
||||||
apply mul_right_inv,
|
apply mul_right_inv,
|
||||||
end
|
end
|
||||||
|
|
||||||
|
-- TODO: This is probably wrong
|
||||||
|
open equiv is_equiv
|
||||||
|
definition group_equiv {A : Type.{l}} [fx : funext]
|
||||||
|
: group A ≃ Σ (G : groupoid.{l l} unit), @hom unit G ⋆ ⋆ ≈ A :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
end groupoid
|
end groupoid
|
||||||
|
|
Loading…
Reference in a new issue