feat(library/data/set/basic): add notation and theorems for large unions and intersections
This commit is contained in:
parent
d83e5d25fc
commit
549feb5d7f
2 changed files with 257 additions and 117 deletions
|
@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Author: Jeremy Avigad, Leonardo de Moura
|
||||
-/
|
||||
import logic.connectives logic.identities algebra.binary
|
||||
open eq.ops binary
|
||||
open eq.ops binary function
|
||||
|
||||
definition set (X : Type) := X → Prop
|
||||
|
||||
|
@ -294,6 +294,15 @@ assume h, or.elim (eq_or_mem_of_mem_insert h)
|
|||
(suppose x = y, this)
|
||||
(suppose x ∈ ∅, absurd this !not_mem_empty)
|
||||
|
||||
theorem insert_eq (x : X) (s : set X) : insert x s = '{x} ∪ s :=
|
||||
ext (take y, iff.intro
|
||||
(suppose y ∈ insert x s,
|
||||
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
|
||||
(suppose y ∈ '{x} ∪ s,
|
||||
or.elim this
|
||||
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
|
||||
(suppose y ∈ s, or.inr this)))
|
||||
|
||||
/- separation -/
|
||||
|
||||
theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} :=
|
||||
|
@ -332,6 +341,21 @@ ext (take x, !not_and_self_iff)
|
|||
section
|
||||
open classical
|
||||
|
||||
theorem comp_empty : -(∅ : set X) = univ :=
|
||||
ext (take x, iff.intro (assume H, trivial) (assume H, not_false))
|
||||
|
||||
theorem comp_union (s t : set X) : -(s ∪ t) = -s ∩ -t :=
|
||||
ext (take x, !not_or_iff_not_and_not)
|
||||
|
||||
theorem comp_comp (s : set X) : -(-s) = s :=
|
||||
ext (take x, !not_not_iff)
|
||||
|
||||
theorem comp_inter (s t : set X) : -(s ∩ t) = -s ∪ -t :=
|
||||
ext (take x, !not_and_iff_not_or_not)
|
||||
|
||||
theorem comp_univ : -(univ : set X) = ∅ :=
|
||||
by rewrite [-comp_empty, comp_comp]
|
||||
|
||||
theorem union_eq_comp_comp_inter_comp (s t : set X) : s ∪ t = -(-s ∩ -t) :=
|
||||
ext (take x, !or_iff_not_and_not)
|
||||
|
||||
|
@ -343,6 +367,10 @@ section
|
|||
|
||||
theorem comp_union_self (s : set X) : -s ∪ s = univ :=
|
||||
ext (take x, !not_or_self_iff)
|
||||
|
||||
theorem complement_compose_complement :
|
||||
#function complement ∘ complement = @id (set X) :=
|
||||
funext (λ s, comp_comp s)
|
||||
end
|
||||
|
||||
/- set difference -/
|
||||
|
@ -375,6 +403,9 @@ ext (take x, iff.intro
|
|||
|
||||
theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _
|
||||
|
||||
theorem comp_eq_univ_diff (s : set X) : -s = univ \ s :=
|
||||
ext (take x, iff.intro (assume H, and.intro trivial H) (assume H, and.right H))
|
||||
|
||||
/- powerset -/
|
||||
|
||||
definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s}
|
||||
|
@ -386,9 +417,105 @@ theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H
|
|||
|
||||
theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl
|
||||
|
||||
/- function image -/
|
||||
|
||||
section image
|
||||
|
||||
variables {Y Z : Type}
|
||||
|
||||
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
|
||||
∀₀ x ∈ a, f1 x = f2 x
|
||||
|
||||
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
|
||||
notation f `'[`:max a `]` := image f a
|
||||
|
||||
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
|
||||
f1 '[a] = f2 '[a] :=
|
||||
ext (take y, iff.intro
|
||||
(assume H2,
|
||||
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
|
||||
have H4 : x ∈ a, from and.left H3,
|
||||
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
|
||||
exists.intro x (and.intro H4 H5))
|
||||
(assume H2,
|
||||
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
|
||||
have H4 : x ∈ a, from and.left H3,
|
||||
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
|
||||
exists.intro x (and.intro H4 H5)))
|
||||
|
||||
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
|
||||
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
|
||||
exists.intro x (and.intro H1 H2)
|
||||
|
||||
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
|
||||
mem_image H rfl
|
||||
|
||||
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
||||
ext (take z,
|
||||
iff.intro
|
||||
(assume Hz : z ∈ (f ∘ g) '[a],
|
||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
|
||||
have Hgx : g x ∈ g '[a], from mem_image Hx₁ rfl,
|
||||
show z ∈ f '[g '[a]], from mem_image Hgx Hx₂)
|
||||
(assume Hz : z ∈ f '[g '[a]],
|
||||
obtain y (Hy₁ : y ∈ g '[a]) (Hy₂ : f y = z), from Hz,
|
||||
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
|
||||
show z ∈ (f ∘ g) '[a], from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
|
||||
|
||||
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
|
||||
take y, assume Hy : y ∈ f '[a],
|
||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
|
||||
mem_image (H Hx₁) Hx₂
|
||||
|
||||
theorem image_union (f : X → Y) (s t : set X) :
|
||||
image f (s ∪ t) = image f s ∪ image f t :=
|
||||
ext (take y, iff.intro
|
||||
(assume H : y ∈ image f (s ∪ t),
|
||||
obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from H,
|
||||
or.elim xst
|
||||
(assume xs, or.inl (mem_image xs fxy))
|
||||
(assume xt, or.inr (mem_image xt fxy)))
|
||||
(assume H : y ∈ image f s ∪ image f t,
|
||||
or.elim H
|
||||
(assume yifs : y ∈ image f s,
|
||||
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
|
||||
mem_image (or.inl xs) fxy)
|
||||
(assume yift : y ∈ image f t,
|
||||
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
|
||||
mem_image (or.inr xt) fxy)))
|
||||
|
||||
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
|
||||
eq_empty_of_forall_not_mem
|
||||
(take y, suppose y ∈ image f ∅,
|
||||
obtain x [(H : x ∈ empty) H'], from this,
|
||||
H)
|
||||
|
||||
theorem mem_image_complement (t : set X) (S : set (set X)) :
|
||||
t ∈ complement '[S] ↔ -t ∈ S :=
|
||||
iff.intro
|
||||
(suppose t ∈ complement '[S],
|
||||
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
|
||||
show -t ∈ S, by rewrite [-Ht, comp_comp]; exact Ht')
|
||||
(suppose -t ∈ S,
|
||||
have -(-t) ∈ complement '[S], from mem_image_of_mem complement this,
|
||||
show t ∈ complement '[S], from comp_comp t ▸ this)
|
||||
|
||||
theorem image_id (s : set X) : id '[s] = s :=
|
||||
ext (take x, iff.intro
|
||||
(suppose x ∈ id '[s],
|
||||
obtain x' [(Hx' : x' ∈ s) (x'eq : x' = x)], from this,
|
||||
show x ∈ s, by rewrite [-x'eq]; apply Hx')
|
||||
(suppose x ∈ s, mem_image_of_mem id this))
|
||||
|
||||
theorem complement_complement_image (S : set (set X)) :
|
||||
complement '[complement '[S]] = S :=
|
||||
by rewrite [-image_compose, complement_compose_complement, image_id]
|
||||
|
||||
end image
|
||||
|
||||
/- large unions -/
|
||||
|
||||
section
|
||||
section large_unions
|
||||
variables {I : Type}
|
||||
variable a : set I
|
||||
variable b : I → set X
|
||||
|
@ -401,58 +528,140 @@ section
|
|||
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
|
||||
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
|
||||
|
||||
-- TODO: need notation for these
|
||||
notation `⋃` binders, r:(scoped f, Union f) := r
|
||||
notation `⋃` binders `∈` s, r:(scoped f, bUnion s f) := r
|
||||
prefix `⋃₀`:110 := sUnion
|
||||
|
||||
theorem Union_subset {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : Union b ⊆ c :=
|
||||
take x,
|
||||
suppose x ∈ Union b,
|
||||
obtain i (Hi : x ∈ b i), from this,
|
||||
show x ∈ c, from H i Hi
|
||||
notation `⋂` binders, r:(scoped f, Inter f) := r
|
||||
notation `⋂` binders `∈` s, r:(scoped f, bInter s f) := r
|
||||
prefix `⋂₀`:110 := sInter
|
||||
|
||||
theorem sUnion_insert (s : set (set X)) (a : set X) :
|
||||
sUnion (insert a s) = a ∪ sUnion s :=
|
||||
end large_unions
|
||||
|
||||
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : Union b ⊆ c :=
|
||||
take x,
|
||||
suppose x ∈ Union b,
|
||||
obtain i (Hi : x ∈ b i), from this,
|
||||
show x ∈ c, from H i Hi
|
||||
|
||||
theorem mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∈ t) (Ht : t ∈ S) :
|
||||
x ∈ ⋃₀ S :=
|
||||
exists.intro t (and.intro Ht Hx)
|
||||
|
||||
theorem Union_eq_sUnion_image {X I : Type} (s : I → set X) : (⋃ i, s i) = ⋃₀ (s '[univ]) :=
|
||||
ext (take x, iff.intro
|
||||
(suppose x ∈ sUnion (insert a s),
|
||||
obtain c [(cias : c ∈ insert a s) (xc : x ∈ c)], from this,
|
||||
or.elim cias
|
||||
(suppose c = a,
|
||||
show x ∈ a ∪ sUnion s, from or.inl (this ▸ xc))
|
||||
(suppose c ∈ s,
|
||||
show x ∈ a ∪ sUnion s, from or.inr (exists.intro c (and.intro this xc))))
|
||||
(suppose x ∈ a ∪ sUnion s,
|
||||
(suppose x ∈ Union s,
|
||||
obtain i (Hi : x ∈ s i), from this,
|
||||
mem_sUnion Hi (mem_image_of_mem s trivial))
|
||||
(suppose x ∈ sUnion (s '[univ]),
|
||||
obtain t [(Ht : t ∈ s '[univ]) (Hx : x ∈ t)], from this,
|
||||
obtain i [univi (Hi : s i = t)], from Ht,
|
||||
exists.intro i (show x ∈ s i, by rewrite Hi; apply Hx)))
|
||||
|
||||
theorem Inter_eq_sInter_image {X I : Type} (s : I → set X) : (⋂ i, s i) = ⋂₀ (s '[univ]) :=
|
||||
ext (take x, iff.intro
|
||||
(assume H : x ∈ Inter s,
|
||||
take t,
|
||||
suppose t ∈ s '[univ],
|
||||
obtain i [univi (Hi : s i = t)], from this,
|
||||
show x ∈ t, by rewrite -Hi; exact H i)
|
||||
(assume H : x ∈ ⋂₀ (s '[univ]),
|
||||
take i,
|
||||
have s i ∈ s '[univ], from mem_image_of_mem s trivial,
|
||||
show x ∈ s i, from H this))
|
||||
|
||||
theorem sUnion_empty : ⋃₀ ∅ = (∅ : set X) :=
|
||||
eq_empty_of_forall_not_mem
|
||||
(take x, suppose x ∈ sUnion ∅,
|
||||
obtain t [(Ht : t ∈ ∅) Ht'], from this,
|
||||
show false, from Ht)
|
||||
|
||||
theorem sInter_empty : ⋂₀ ∅ = (univ : set X) :=
|
||||
eq_univ_of_forall (λ x s H, false.elim H)
|
||||
|
||||
theorem sUnion_singleton (s : set X) : ⋃₀ '{s} = s :=
|
||||
ext (take x, iff.intro
|
||||
(suppose x ∈ sUnion '{s},
|
||||
obtain u [(Hu : u ∈ '{s}) (xu : x ∈ u)], from this,
|
||||
have u = s, from eq_of_mem_singleton Hu,
|
||||
show x ∈ s, using this, by rewrite -this; apply xu)
|
||||
(suppose x ∈ s,
|
||||
mem_sUnion this (mem_singleton s)))
|
||||
|
||||
theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s :=
|
||||
ext (take x, iff.intro
|
||||
(suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s))
|
||||
(suppose x ∈ s, take u, suppose u ∈ '{s},
|
||||
show x ∈ u, by+ rewrite [eq_of_mem_singleton this]; assumption))
|
||||
|
||||
theorem sUnion_union (S T : set (set X)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T :=
|
||||
ext (take x, iff.intro
|
||||
(suppose x ∈ sUnion (S ∪ T),
|
||||
obtain u [(Hu : u ∈ S ∪ T) (xu : x ∈ u)], from this,
|
||||
or.elim Hu
|
||||
(assume uS, or.inl (mem_sUnion xu uS))
|
||||
(assume uT, or.inr (mem_sUnion xu uT)))
|
||||
(suppose x ∈ sUnion S ∪ sUnion T,
|
||||
or.elim this
|
||||
(suppose x ∈ a,
|
||||
have a ∈ insert a s, from or.inl rfl,
|
||||
show x ∈ sUnion (insert a s), from exists.intro a (and.intro this `x ∈ a`))
|
||||
(suppose x ∈ sUnion s,
|
||||
obtain c [(cs : c ∈ s) (xc : x ∈ c)], from this,
|
||||
have c ∈ insert a s, from or.inr cs,
|
||||
show x ∈ sUnion (insert a s), from exists.intro c (and.intro this `x ∈ c`))))
|
||||
(suppose x ∈ sUnion S,
|
||||
obtain u [(uS : u ∈ S) (xu : x ∈ u)], from this,
|
||||
mem_sUnion xu (or.inl uS))
|
||||
(suppose x ∈ sUnion T,
|
||||
obtain u [(uT : u ∈ T) (xu : x ∈ u)], from this,
|
||||
mem_sUnion xu (or.inr uT))))
|
||||
|
||||
lemma sInter_insert (s : set (set X)) (a : set X) :
|
||||
sInter (insert a s) = a ∩ sInter s :=
|
||||
theorem sInter_union (S T : set (set X)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T :=
|
||||
ext (take x, iff.intro
|
||||
(suppose x ∈ sInter (insert a s),
|
||||
have ∀c, c ∈ insert a s → x ∈ c, from this,
|
||||
have x ∈ a, from (this a) !mem_insert,
|
||||
show x ∈ a ∩ sInter s, from and.intro
|
||||
`x ∈ a`
|
||||
take c,
|
||||
suppose c ∈ s,
|
||||
(`∀c, c ∈ insert a s → x ∈ c` c) (!mem_insert_of_mem this))
|
||||
(suppose x ∈ a ∩ sInter s,
|
||||
show ∀c, c ∈ insert a s → x ∈ c, from
|
||||
take c,
|
||||
suppose c ∈ insert a s,
|
||||
have c = a → x ∈ c, from
|
||||
suppose c = a,
|
||||
show x ∈ c, from this⁻¹ ▸ and.elim_left `x ∈ a ∩ sInter s`,
|
||||
have c ∈ s → x ∈ c, from
|
||||
suppose c ∈ s,
|
||||
have ∀c, c ∈ s → x ∈ c, from and.elim_right `x ∈ a ∩ sInter s`,
|
||||
show x ∈ c, from (this c) `c ∈ s`,
|
||||
show x ∈ c, from !or.elim `c ∈ insert a s` `c = a → x ∈ c` this))
|
||||
(assume H : x ∈ ⋂₀ (S ∪ T),
|
||||
and.intro (λ u uS, H (or.inl uS)) (λ u uT, H (or.inr uT)))
|
||||
(assume H : x ∈ ⋂₀ S ∩ ⋂₀ T,
|
||||
take u, suppose u ∈ S ∪ T, or.elim this (λ uS, and.left H u uS) (λ uT, and.right H u uT)))
|
||||
|
||||
end
|
||||
theorem sUnion_insert (s : set X) (T : set (set X)) :
|
||||
⋃₀ (insert s T) = s ∪ ⋃₀ T :=
|
||||
by rewrite [insert_eq, sUnion_union, sUnion_singleton]
|
||||
|
||||
theorem sInter_insert (s : set X) (T : set (set X)) :
|
||||
⋂₀ (insert s T) = s ∩ ⋂₀ T :=
|
||||
by rewrite [insert_eq, sInter_union, sInter_singleton]
|
||||
|
||||
theorem comp_sUnion (S : set (set X)) :
|
||||
- ⋃₀ S = ⋂₀ (complement '[S]) :=
|
||||
ext (take x, iff.intro
|
||||
(assume H : x ∈ -(⋃₀ S),
|
||||
take t, suppose t ∈ complement '[S],
|
||||
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
|
||||
have x ∈ -t', from suppose x ∈ t', H (mem_sUnion this Ht'),
|
||||
show x ∈ t, using this, by rewrite -Ht; apply this)
|
||||
(assume H : x ∈ ⋂₀ (complement '[S]),
|
||||
suppose x ∈ ⋃₀ S,
|
||||
obtain t [(tS : t ∈ S) (xt : x ∈ t)], from this,
|
||||
have -t ∈ complement '[S], from mem_image_of_mem complement tS,
|
||||
have x ∈ -t, from H this,
|
||||
show false, proof this xt qed))
|
||||
|
||||
theorem sUnion_eq_comp_sInter_comp (S : set (set X)) :
|
||||
⋃₀ S = - ⋂₀ (complement '[S]) :=
|
||||
by rewrite [-comp_comp, comp_sUnion]
|
||||
|
||||
theorem comp_sInter (S : set (set X)) :
|
||||
- ⋂₀ S = ⋃₀ (complement '[S]) :=
|
||||
by rewrite [sUnion_eq_comp_sInter_comp, complement_complement_image]
|
||||
|
||||
theorem sInter_eq_comp_sUnion_comp (S : set (set X)) :
|
||||
⋂₀ S = -(⋃₀ (complement '[S])) :=
|
||||
by rewrite [-comp_comp, comp_sInter]
|
||||
|
||||
theorem comp_Union {X I : Type} (s : I → set X) : - (⋃ i, s i) = (⋂ i, - s i) :=
|
||||
by rewrite [Union_eq_sUnion_image, comp_sUnion, -image_compose, -Inter_eq_sInter_image]
|
||||
|
||||
theorem Union_eq_comp_Inter_comp {X I : Type} (s : I → set X) : (⋃ i, s i) = - (⋂ i, - s i) :=
|
||||
by rewrite [-comp_comp, comp_Union]
|
||||
|
||||
theorem comp_Inter {X I : Type} (s : I → set X) : -(⋂ i, s i) = (⋃ i, - s i) :=
|
||||
by rewrite [Inter_eq_sInter_image, comp_sInter, -image_compose, -Union_eq_sUnion_image]
|
||||
|
||||
theorem Inter_eq_comp_Union_comp {X I : Type} (s : I → set X) : (⋂ i, s i) = - (⋃ i, -s i) :=
|
||||
by rewrite [-comp_comp, comp_Inter]
|
||||
|
||||
end set
|
||||
|
|
|
@ -12,75 +12,6 @@ namespace set
|
|||
|
||||
variables {X Y Z : Type}
|
||||
|
||||
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
|
||||
∀₀ x ∈ a, f1 x = f2 x
|
||||
|
||||
/- image -/
|
||||
|
||||
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
|
||||
notation f `'[`:max a `]` := image f a
|
||||
|
||||
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
|
||||
f1 '[a] = f2 '[a] :=
|
||||
ext (take y, iff.intro
|
||||
(assume H2,
|
||||
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
|
||||
have H4 : x ∈ a, from and.left H3,
|
||||
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
|
||||
exists.intro x (and.intro H4 H5))
|
||||
(assume H2,
|
||||
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
|
||||
have H4 : x ∈ a, from and.left H3,
|
||||
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
|
||||
exists.intro x (and.intro H4 H5)))
|
||||
|
||||
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
|
||||
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
|
||||
exists.intro x (and.intro H1 H2)
|
||||
|
||||
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
|
||||
mem_image H rfl
|
||||
|
||||
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
||||
ext (take z,
|
||||
iff.intro
|
||||
(assume Hz : z ∈ (f ∘ g) '[a],
|
||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
|
||||
have Hgx : g x ∈ g '[a], from mem_image Hx₁ rfl,
|
||||
show z ∈ f '[g '[a]], from mem_image Hgx Hx₂)
|
||||
(assume Hz : z ∈ f '[g '[a]],
|
||||
obtain y (Hy₁ : y ∈ g '[a]) (Hy₂ : f y = z), from Hz,
|
||||
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
|
||||
show z ∈ (f ∘ g) '[a], from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
|
||||
|
||||
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
|
||||
take y, assume Hy : y ∈ f '[a],
|
||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
|
||||
mem_image (H Hx₁) Hx₂
|
||||
|
||||
theorem image_union (f : X → Y) (s t : set X) :
|
||||
image f (s ∪ t) = image f s ∪ image f t :=
|
||||
ext (take y, iff.intro
|
||||
(assume H : y ∈ image f (s ∪ t),
|
||||
obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from H,
|
||||
or.elim xst
|
||||
(assume xs, or.inl (mem_image xs fxy))
|
||||
(assume xt, or.inr (mem_image xt fxy)))
|
||||
(assume H : y ∈ image f s ∪ image f t,
|
||||
or.elim H
|
||||
(assume yifs : y ∈ image f s,
|
||||
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
|
||||
mem_image (or.inl xs) fxy)
|
||||
(assume yift : y ∈ image f t,
|
||||
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
|
||||
mem_image (or.inr xt) fxy)))
|
||||
|
||||
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
|
||||
eq_empty_of_forall_not_mem
|
||||
(take y, suppose y ∈ image f ∅,
|
||||
obtain x [(H : x ∈ empty) H'], from this,
|
||||
H)
|
||||
|
||||
/- maps to -/
|
||||
|
||||
definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b
|
||||
|
|
Loading…
Reference in a new issue