feat(library/data/set/basic): add notation and theorems for large unions and intersections

This commit is contained in:
Jeremy Avigad 2015-12-26 08:02:04 -08:00
parent d83e5d25fc
commit 549feb5d7f
2 changed files with 257 additions and 117 deletions

View file

@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Leonardo de Moura
-/
import logic.connectives logic.identities algebra.binary
open eq.ops binary
open eq.ops binary function
definition set (X : Type) := X → Prop
@ -294,6 +294,15 @@ assume h, or.elim (eq_or_mem_of_mem_insert h)
(suppose x = y, this)
(suppose x ∈ ∅, absurd this !not_mem_empty)
theorem insert_eq (x : X) (s : set X) : insert x s = '{x} s :=
ext (take y, iff.intro
(suppose y ∈ insert x s,
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
(suppose y ∈ '{x} s,
or.elim this
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
(suppose y ∈ s, or.inr this)))
/- separation -/
theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} :=
@ -332,6 +341,21 @@ ext (take x, !not_and_self_iff)
section
open classical
theorem comp_empty : -(∅ : set X) = univ :=
ext (take x, iff.intro (assume H, trivial) (assume H, not_false))
theorem comp_union (s t : set X) : -(s t) = -s ∩ -t :=
ext (take x, !not_or_iff_not_and_not)
theorem comp_comp (s : set X) : -(-s) = s :=
ext (take x, !not_not_iff)
theorem comp_inter (s t : set X) : -(s ∩ t) = -s -t :=
ext (take x, !not_and_iff_not_or_not)
theorem comp_univ : -(univ : set X) = ∅ :=
by rewrite [-comp_empty, comp_comp]
theorem union_eq_comp_comp_inter_comp (s t : set X) : s t = -(-s ∩ -t) :=
ext (take x, !or_iff_not_and_not)
@ -343,6 +367,10 @@ section
theorem comp_union_self (s : set X) : -s s = univ :=
ext (take x, !not_or_self_iff)
theorem complement_compose_complement :
#function complement ∘ complement = @id (set X) :=
funext (λ s, comp_comp s)
end
/- set difference -/
@ -375,6 +403,9 @@ ext (take x, iff.intro
theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _
theorem comp_eq_univ_diff (s : set X) : -s = univ \ s :=
ext (take x, iff.intro (assume H, and.intro trivial H) (assume H, and.right H))
/- powerset -/
definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s}
@ -386,9 +417,105 @@ theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H
theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl
/- function image -/
section image
variables {Y Z : Type}
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, f1 x = f2 x
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
notation f `'[`:max a `]` := image f a
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
f1 '[a] = f2 '[a] :=
ext (take y, iff.intro
(assume H2,
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
exists.intro x (and.intro H4 H5))
(assume H2,
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
exists.intro x (and.intro H4 H5)))
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
exists.intro x (and.intro H1 H2)
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
mem_image H rfl
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
ext (take z,
iff.intro
(assume Hz : z ∈ (f ∘ g) '[a],
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
have Hgx : g x ∈ g '[a], from mem_image Hx₁ rfl,
show z ∈ f '[g '[a]], from mem_image Hgx Hx₂)
(assume Hz : z ∈ f '[g '[a]],
obtain y (Hy₁ : y ∈ g '[a]) (Hy₂ : f y = z), from Hz,
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
show z ∈ (f ∘ g) '[a], from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
take y, assume Hy : y ∈ f '[a],
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
mem_image (H Hx₁) Hx₂
theorem image_union (f : X → Y) (s t : set X) :
image f (s t) = image f s image f t :=
ext (take y, iff.intro
(assume H : y ∈ image f (s t),
obtain x [(xst : x ∈ s t) (fxy : f x = y)], from H,
or.elim xst
(assume xs, or.inl (mem_image xs fxy))
(assume xt, or.inr (mem_image xt fxy)))
(assume H : y ∈ image f s image f t,
or.elim H
(assume yifs : y ∈ image f s,
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
mem_image (or.inl xs) fxy)
(assume yift : y ∈ image f t,
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
mem_image (or.inr xt) fxy)))
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
eq_empty_of_forall_not_mem
(take y, suppose y ∈ image f ∅,
obtain x [(H : x ∈ empty) H'], from this,
H)
theorem mem_image_complement (t : set X) (S : set (set X)) :
t ∈ complement '[S] ↔ -t ∈ S :=
iff.intro
(suppose t ∈ complement '[S],
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
show -t ∈ S, by rewrite [-Ht, comp_comp]; exact Ht')
(suppose -t ∈ S,
have -(-t) ∈ complement '[S], from mem_image_of_mem complement this,
show t ∈ complement '[S], from comp_comp t ▸ this)
theorem image_id (s : set X) : id '[s] = s :=
ext (take x, iff.intro
(suppose x ∈ id '[s],
obtain x' [(Hx' : x' ∈ s) (x'eq : x' = x)], from this,
show x ∈ s, by rewrite [-x'eq]; apply Hx')
(suppose x ∈ s, mem_image_of_mem id this))
theorem complement_complement_image (S : set (set X)) :
complement '[complement '[S]] = S :=
by rewrite [-image_compose, complement_compose_complement, image_id]
end image
/- large unions -/
section
section large_unions
variables {I : Type}
variable a : set I
variable b : I → set X
@ -401,58 +528,140 @@ section
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
-- TODO: need notation for these
notation `` binders, r:(scoped f, Union f) := r
notation `` binders `∈` s, r:(scoped f, bUnion s f) := r
prefix `⋃₀`:110 := sUnion
theorem Union_subset {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : Union b ⊆ c :=
take x,
suppose x ∈ Union b,
obtain i (Hi : x ∈ b i), from this,
show x ∈ c, from H i Hi
notation `⋂` binders, r:(scoped f, Inter f) := r
notation `⋂` binders `∈` s, r:(scoped f, bInter s f) := r
prefix `⋂₀`:110 := sInter
theorem sUnion_insert (s : set (set X)) (a : set X) :
sUnion (insert a s) = a sUnion s :=
end large_unions
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : Union b ⊆ c :=
take x,
suppose x ∈ Union b,
obtain i (Hi : x ∈ b i), from this,
show x ∈ c, from H i Hi
theorem mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∈ t) (Ht : t ∈ S) :
x ∈ ⋃₀ S :=
exists.intro t (and.intro Ht Hx)
theorem Union_eq_sUnion_image {X I : Type} (s : I → set X) : ( i, s i) = ⋃₀ (s '[univ]) :=
ext (take x, iff.intro
(suppose x ∈ sUnion (insert a s),
obtain c [(cias : c ∈ insert a s) (xc : x ∈ c)], from this,
or.elim cias
(suppose c = a,
show x ∈ a sUnion s, from or.inl (this ▸ xc))
(suppose c ∈ s,
show x ∈ a sUnion s, from or.inr (exists.intro c (and.intro this xc))))
(suppose x ∈ a sUnion s,
(suppose x ∈ Union s,
obtain i (Hi : x ∈ s i), from this,
mem_sUnion Hi (mem_image_of_mem s trivial))
(suppose x ∈ sUnion (s '[univ]),
obtain t [(Ht : t ∈ s '[univ]) (Hx : x ∈ t)], from this,
obtain i [univi (Hi : s i = t)], from Ht,
exists.intro i (show x ∈ s i, by rewrite Hi; apply Hx)))
theorem Inter_eq_sInter_image {X I : Type} (s : I → set X) : (⋂ i, s i) = ⋂₀ (s '[univ]) :=
ext (take x, iff.intro
(assume H : x ∈ Inter s,
take t,
suppose t ∈ s '[univ],
obtain i [univi (Hi : s i = t)], from this,
show x ∈ t, by rewrite -Hi; exact H i)
(assume H : x ∈ ⋂₀ (s '[univ]),
take i,
have s i ∈ s '[univ], from mem_image_of_mem s trivial,
show x ∈ s i, from H this))
theorem sUnion_empty : ⋃₀ ∅ = (∅ : set X) :=
eq_empty_of_forall_not_mem
(take x, suppose x ∈ sUnion ∅,
obtain t [(Ht : t ∈ ∅) Ht'], from this,
show false, from Ht)
theorem sInter_empty : ⋂₀ ∅ = (univ : set X) :=
eq_univ_of_forall (λ x s H, false.elim H)
theorem sUnion_singleton (s : set X) : ⋃₀ '{s} = s :=
ext (take x, iff.intro
(suppose x ∈ sUnion '{s},
obtain u [(Hu : u ∈ '{s}) (xu : x ∈ u)], from this,
have u = s, from eq_of_mem_singleton Hu,
show x ∈ s, using this, by rewrite -this; apply xu)
(suppose x ∈ s,
mem_sUnion this (mem_singleton s)))
theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s :=
ext (take x, iff.intro
(suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s))
(suppose x ∈ s, take u, suppose u ∈ '{s},
show x ∈ u, by+ rewrite [eq_of_mem_singleton this]; assumption))
theorem sUnion_union (S T : set (set X)) : ⋃₀ (S T) = ⋃₀ S ⋃₀ T :=
ext (take x, iff.intro
(suppose x ∈ sUnion (S T),
obtain u [(Hu : u ∈ S T) (xu : x ∈ u)], from this,
or.elim Hu
(assume uS, or.inl (mem_sUnion xu uS))
(assume uT, or.inr (mem_sUnion xu uT)))
(suppose x ∈ sUnion S sUnion T,
or.elim this
(suppose x ∈ a,
have a ∈ insert a s, from or.inl rfl,
show x ∈ sUnion (insert a s), from exists.intro a (and.intro this `x ∈ a`))
(suppose x ∈ sUnion s,
obtain c [(cs : c ∈ s) (xc : x ∈ c)], from this,
have c ∈ insert a s, from or.inr cs,
show x ∈ sUnion (insert a s), from exists.intro c (and.intro this `x ∈ c`))))
(suppose x ∈ sUnion S,
obtain u [(uS : u ∈ S) (xu : x ∈ u)], from this,
mem_sUnion xu (or.inl uS))
(suppose x ∈ sUnion T,
obtain u [(uT : u ∈ T) (xu : x ∈ u)], from this,
mem_sUnion xu (or.inr uT))))
lemma sInter_insert (s : set (set X)) (a : set X) :
sInter (insert a s) = a ∩ sInter s :=
theorem sInter_union (S T : set (set X)) : ⋂₀ (S T) = ⋂₀ S ∩ ⋂₀ T :=
ext (take x, iff.intro
(suppose x ∈ sInter (insert a s),
have ∀c, c ∈ insert a s → x ∈ c, from this,
have x ∈ a, from (this a) !mem_insert,
show x ∈ a ∩ sInter s, from and.intro
`x ∈ a`
take c,
suppose c ∈ s,
(`∀c, c ∈ insert a s → x ∈ c` c) (!mem_insert_of_mem this))
(suppose x ∈ a ∩ sInter s,
show ∀c, c ∈ insert a s → x ∈ c, from
take c,
suppose c ∈ insert a s,
have c = a → x ∈ c, from
suppose c = a,
show x ∈ c, from this⁻¹ ▸ and.elim_left `x ∈ a ∩ sInter s`,
have c ∈ s → x ∈ c, from
suppose c ∈ s,
have ∀c, c ∈ s → x ∈ c, from and.elim_right `x ∈ a ∩ sInter s`,
show x ∈ c, from (this c) `c ∈ s`,
show x ∈ c, from !or.elim `c ∈ insert a s` `c = a → x ∈ c` this))
(assume H : x ∈ ⋂₀ (S T),
and.intro (λ u uS, H (or.inl uS)) (λ u uT, H (or.inr uT)))
(assume H : x ∈ ⋂₀ S ∩ ⋂₀ T,
take u, suppose u ∈ S T, or.elim this (λ uS, and.left H u uS) (λ uT, and.right H u uT)))
end
theorem sUnion_insert (s : set X) (T : set (set X)) :
⋃₀ (insert s T) = s ⋃₀ T :=
by rewrite [insert_eq, sUnion_union, sUnion_singleton]
theorem sInter_insert (s : set X) (T : set (set X)) :
⋂₀ (insert s T) = s ∩ ⋂₀ T :=
by rewrite [insert_eq, sInter_union, sInter_singleton]
theorem comp_sUnion (S : set (set X)) :
- ⋃₀ S = ⋂₀ (complement '[S]) :=
ext (take x, iff.intro
(assume H : x ∈ -(⋃₀ S),
take t, suppose t ∈ complement '[S],
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
have x ∈ -t', from suppose x ∈ t', H (mem_sUnion this Ht'),
show x ∈ t, using this, by rewrite -Ht; apply this)
(assume H : x ∈ ⋂₀ (complement '[S]),
suppose x ∈ ⋃₀ S,
obtain t [(tS : t ∈ S) (xt : x ∈ t)], from this,
have -t ∈ complement '[S], from mem_image_of_mem complement tS,
have x ∈ -t, from H this,
show false, proof this xt qed))
theorem sUnion_eq_comp_sInter_comp (S : set (set X)) :
⋃₀ S = - ⋂₀ (complement '[S]) :=
by rewrite [-comp_comp, comp_sUnion]
theorem comp_sInter (S : set (set X)) :
- ⋂₀ S = ⋃₀ (complement '[S]) :=
by rewrite [sUnion_eq_comp_sInter_comp, complement_complement_image]
theorem sInter_eq_comp_sUnion_comp (S : set (set X)) :
⋂₀ S = -(⋃₀ (complement '[S])) :=
by rewrite [-comp_comp, comp_sInter]
theorem comp_Union {X I : Type} (s : I → set X) : - ( i, s i) = (⋂ i, - s i) :=
by rewrite [Union_eq_sUnion_image, comp_sUnion, -image_compose, -Inter_eq_sInter_image]
theorem Union_eq_comp_Inter_comp {X I : Type} (s : I → set X) : ( i, s i) = - (⋂ i, - s i) :=
by rewrite [-comp_comp, comp_Union]
theorem comp_Inter {X I : Type} (s : I → set X) : -(⋂ i, s i) = ( i, - s i) :=
by rewrite [Inter_eq_sInter_image, comp_sInter, -image_compose, -Union_eq_sUnion_image]
theorem Inter_eq_comp_Union_comp {X I : Type} (s : I → set X) : (⋂ i, s i) = - ( i, -s i) :=
by rewrite [-comp_comp, comp_Inter]
end set

View file

@ -12,75 +12,6 @@ namespace set
variables {X Y Z : Type}
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, f1 x = f2 x
/- image -/
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
notation f `'[`:max a `]` := image f a
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
f1 '[a] = f2 '[a] :=
ext (take y, iff.intro
(assume H2,
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
exists.intro x (and.intro H4 H5))
(assume H2,
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
exists.intro x (and.intro H4 H5)))
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
exists.intro x (and.intro H1 H2)
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
mem_image H rfl
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
ext (take z,
iff.intro
(assume Hz : z ∈ (f ∘ g) '[a],
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
have Hgx : g x ∈ g '[a], from mem_image Hx₁ rfl,
show z ∈ f '[g '[a]], from mem_image Hgx Hx₂)
(assume Hz : z ∈ f '[g '[a]],
obtain y (Hy₁ : y ∈ g '[a]) (Hy₂ : f y = z), from Hz,
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
show z ∈ (f ∘ g) '[a], from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
take y, assume Hy : y ∈ f '[a],
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
mem_image (H Hx₁) Hx₂
theorem image_union (f : X → Y) (s t : set X) :
image f (s t) = image f s image f t :=
ext (take y, iff.intro
(assume H : y ∈ image f (s t),
obtain x [(xst : x ∈ s t) (fxy : f x = y)], from H,
or.elim xst
(assume xs, or.inl (mem_image xs fxy))
(assume xt, or.inr (mem_image xt fxy)))
(assume H : y ∈ image f s image f t,
or.elim H
(assume yifs : y ∈ image f s,
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
mem_image (or.inl xs) fxy)
(assume yift : y ∈ image f t,
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
mem_image (or.inr xt) fxy)))
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
eq_empty_of_forall_not_mem
(take y, suppose y ∈ image f ∅,
obtain x [(H : x ∈ empty) H'], from this,
H)
/- maps to -/
definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b